×

Surface-tension-induced buckling of liquid-lined elastic tubes: a model for pulmonary airway closure. (English) Zbl 1139.74413

Summary: We use a fully coupled, three-dimensional, finite-element method to study the evolution of the surface-tension-driven instabilities of a liquid layer that lines an elastic tube, a simple model for pulmonary airway closure. The equations of large-displacement shell theory are used to describe the deformations of the tube and are coupled to the Navier-Stokes equations, describing the motion of the liquid.
The liquid layer is susceptible to a capillary instability, whereby an initially uniform layer can develop a series of axisymmetric peaks and troughs, analogous to the classical instability that causes liquid jets to break up into droplets. For sufficiently high values of the liquid’s surface tension, relative to the bending stiffness of the tube, the additional compressive load induced by the development of the axisymmetric instability can induce non-axisymmetric buckling of the tube wall. Once the tube has buckled, a strong destabilizing feedback between the fluid and solid mechanics leads to an extremely rapid further collapse and occlusion of the gas-conveying core of the tube by the liquid. We find that such occlusion is possible even when the volume of the liquid is too small to form an occluding liquid bridge in the axisymmetric tube.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74G60 Bifurcation and buckling
74L15 Biomechanical solid mechanics
76Z05 Physiological flows
92C30 Physiology (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bogner, F.K., Fox, R.L. & Schmit, L.A. 1967 A cylindrical shell discrete element. <i>AIAA J.</i>&nbsp;<b>5</b>, 745–750.
[2] Burger, E.J., Jr & Macklem, P. 1968 Airway closure: demonstration by breathing 100
[3] Cassidy, K.J., Halpern, D., Ressler, B.G. & Grotberg, J.B. 1999 Surfactant effects in model airway closure experiments. <i>J. Appl. Physiol.</i>&nbsp;<b>87</b>, 415–427.
[4] Duff, I.S. & Scott, J.A. 1996 The design of a new frontal code for solving sparse, unsymmetric linear systems. <i>ACM Trans. Math. Software</i>&nbsp;<b>22</b>, 30–45. · Zbl 0884.65018
[5] Engel, L.A., Grassino, A. & Anthonisen, N.R. 1975 Demonstration of airway closure in man. <i>J. Appl. Physiol.</i>&nbsp;<b>38</b>, 1117–1125.
[6] Flaherty, J.E., Keller, J.B. & Rubinow, S.I. 1972 Post buckling behavior of elastic tubes and rings with opposite sides in contact. <i>SIAM J. Appl. Math.</i>&nbsp;<b>23</b>, 446–455. · Zbl 0249.73046
[7] Gauglitz, P.A. & Radke, C.J. 1988 An extended evolution equation for liquid film breakup in cylindrical capillaries. <i>Chem. Eng. Sci.</i>&nbsp;<b>43</b>, 1457–1465.
[8] Goren, S.L. 1962 The instability of an annular thread of fluid. <i>J. Fluid Mech.</i>&nbsp;<b>12</b>, 309–319. · Zbl 0105.39602
[9] Green, A.E. & Zerna, W. 1954 Theoretical elasticity. London: Oxford University Press. · Zbl 0056.18205
[10] Gresho, P.M. & Sani, R.L. 2000 Incompressible flow and the finite element method. Isothermal laminar flow. Vol. 2. Chichester: Wiley. · Zbl 0988.76005
[11] Halpern, D. & Grotberg, J.B. 1992 Fluid–elastic instabilities of liquid-lined flexible tubes. <i>J. Fluid Mech.</i>&nbsp;<b>244</b>, 615–632. · Zbl 0775.76054
[12] Halpern, D. & Grotberg, J.B. 1993 Surfactant effects on fluid–elastic instabilities of liquid-lined flexible tubes: a model of airway closure. <i>ASME J. Biomech. Eng.</i>&nbsp;<b>115</b>, 271–277.
[13] Hammond, P.S. 1983 Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe. <i>J. Fluid Mech.</i>&nbsp;<b>137</b>, 363–384. · Zbl 0571.76046
[14] Hazel, A.L. & Heil, M. 2003 Steady finite-Reynolds-number flows in three-dimensional collapsible tubes. <i>J. Fluid Mech.</i>&nbsp;<b>486</b>, 79–103. · Zbl 1070.76011
[15] Hazel, A.L. & Heil, M. 2003 Three-dimensional airway reopening: the steady propagation of a semi-infinite bubble into a buckled elastic tube. <i>J. Fluid Mech.</i>&nbsp;<b>478</b>, 47–70. · Zbl 1037.76059
[16] Heil, M. 1999 Minimal liquid bridges in non-axisymmetrically buckled elastic tubes. <i>J. Fluid Mech.</i>&nbsp;<b>380</b>, 309–337. · Zbl 0959.74018
[17] Heil, M. & White, J.P. 2002 Airway closure: surface-tension-driven non-axisymmetric instabilities of liquid-lined elastic rings. <i>J. Fluid Mech.</i>&nbsp;<b>462</b>, 79–109. · Zbl 1156.74320
[18] Hughes, J.M.B., Rosenzweig, D.Y. & Kivitz, P.B. 1970 Site of airway closure in excised dog lungs: histologic demonstration. <i>J. Appl. Physiol.</i>&nbsp;<b>29</b>, 340–344.
[19] Johnson, M., Kamm, R.D., Ho, L.W., Shapiro, A. & Pedley, T.J. 1991 The nonlinear growth of surface-tension-driven instabilities of a thin annular film. <i>J. Fluid Mech.</i>&nbsp;<b>233</b>, 141–156. · Zbl 0738.76030
[20] Kamm, R.D. & Schroter, R.C. 1989 Is airway closure caused by a liquid film instability?. <i>Respir. Physiol.</i>&nbsp;<b>75</b>, 141–156.
[21] Kistler, S.F. & Scriven, L.E. 1983 Coating flows. <i>Computational analysis of polymer processing</i> (eds. Pearson, J.R.A. & Richardson, S.M.), pp. 243–299, London: Applied Science Publishers
[22] Lambert, R.K., Codd, S.L., Alley, M.R. & Pack, R.J. 1994 Physical determinants of bronchial mucosal folding. <i>J. Appl. Physiol.</i>&nbsp;<b>77</b>, 1206–1219.
[23] Otis, D.R., Johnson, M., Pedley, T.J. & Kamm, R.D. 1993 Role of pulmonary surfactant in airway closure: a computational study. <i>J. Appl. Physiol.</i>&nbsp;<b>75</b>, 1323–1333.
[24] Plateau, J. 1873 <i>Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires</i>, vol. 2. Paris: Gauthier-Villars.
[25] Rayleigh, Lord 1879 On the capillary phenomena of jets. <i>Proc. R. Soc.</i>&nbsp;<b>29</b>, 71–97.
[26] Ruschak, K.J. 1980 A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators. <i>Int. J. Numer. Meth. Eng.</i>&nbsp;<b>15</b>, 639–648. · Zbl 0426.76038
[27] Suki, B., Barbasi, A.-L., Hantos, Z., Petak, F. & Stanley, H.E. 1994 Avalanches and power-law behaviour in lung inflation. <i>Nature</i>&nbsp;<b>368</b>, 615–618.
[28] Taylor, C. & Hood, P. 1973 A numerical solution of the Navier–Stokes equations using the finite element technique. <i>Comput. Fluids</i>&nbsp;<b>1</b>, 73–100. · Zbl 0328.76020
[29] Wang, C.Y., Watson, L.T. & Kamat, M.P. 1983 Buckling, postbuckling, and the flow through a tethered elastic cylinder under external pressure. <i>ASME J. Appl. Mech.</i>&nbsp;<b>50</b>, 13–18. · Zbl 0511.73040
[30] Weatherburn, C.E. 1955 <i>Differential geometry of three dimensions</i>, vol. 1. 1st edn. Cambridge: Cambridge University Press.
[31] Wempner, G.A. 1973 Mechanics of solids. New York: McGraw-Hill. · Zbl 0303.73001
[32] White, J. P. 2003 Airway closure: surface-tension-driven non-axisymmetric instabilities of liquid-lined elastic tubes. Ph.D. thesis, University of Manchester, Manchester.
[33] White, J.P. & Heil, M. 2005 Three-dimensional instabilities of liquid-lined elastic tubes: a thin-film, fluid–structure interaction model. <i>Phys. Fluids</i>&nbsp;<b>17</b>, (3), 031506. · Zbl 1187.76562
[34] Wiggs, B.R., Hrousis, C.A., Drazen, J.M. & Kamm, R.D. 1997 On the mechanism of mucosal folding in normal and asthmatic airways. <i>J. Appl. Physiol.</i>&nbsp;<b>83</b>, 1814–1821.
[35] Yamaki, N. 1984 Elastic stability of circular cylindrical shells. Amsterdam: North-Holland. · Zbl 0544.73062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.