×

zbMATH — the first resource for mathematics

Market selection decisions for inventory models with price-sensitive demand. (English) Zbl 1139.90006
Summary: In the majority of classical inventory theory literature, demand arises from exogenous sources upon which the firm has little or no control. In many practical contexts, however, aggregate demand is comprised of individual demands from a number of distinct customers or markets. This introduces new dimensions to supply chain planning problems involving the selection of markets or customers to include in the demand portfolio. We present a nonlinear, combinatorial optimization model to address planning decisions in both deterministic and stochastic settings, where a firm constructs a demand portfolio from a set of potential markets having price-sensitive demands. We first consider a pricing strategy that dictates a single price throughout all markets and provide an efficient algorithm for maximizing total profit. We also analyze the model under a market-specific pricing policy and describe its optimal solution. An extensive computational study characterizes the effects of key system parameters on the optimal value of expected profit, and provides some interesting insights on how a given market’s characteristics can affect optimal pricing decisions in other markets.

MSC:
90B05 Inventory, storage, reservoirs
90C27 Combinatorial optimization
91B24 Microeconomic theory (price theory and economic markets)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abad P.L. (1996). Optimal pricing and lot-sizing under conditions of perishability and partial backordering. Manage. Sci. 42(8): 1093–1104 · Zbl 0879.90069 · doi:10.1287/mnsc.42.8.1093
[2] Armstrong, M.: Recent developments in the economics of price discrimination. In: Blundell R., Newey W., Persson T. (eds.), Advances in Economics and Econometrics: Theory and Applications: Ninth World Congress, Vol. 2. Cambridge University Press (2006) · Zbl 1118.91042
[3] Balakrishnan A., Natarajan H.P. and Pangburn M.S. (2000). Optimizing delivery fees for a network of distributors. Manuf. Serv. Oper. Manage. 2(3): 297–316 · doi:10.1287/msom.2.3.297.12347
[4] Battalio R.C., Ekelund, R.B., Jr. (1972). Output change under third degree discrimination. South. Econ. J. 39(2): 285–290 · doi:10.2307/1056599
[5] Cabral, L.M.B.: Introduction to Industrial Organization. MIT Press (2000)
[6] Carr S. and Lovejoy W. (2000). The inverse newsvendor problem: choosing an optimal demand portfolio for capacitated resources. Manage. Sci. 46(7): 912–927 · Zbl 1231.90015 · doi:10.1287/mnsc.46.7.912.12036
[7] Chang P.L. and Lin C.T. (1991). On the effect of centralization on expected costs in a multi-location newsboy problem. J. Oper. Res. Soc. 42(11): 1025–1030 · Zbl 0736.90025
[8] Chen M.S. and Lin C.T. (1989). Effects of centralization on expected costs in a multi-location newsboy problem. J. Oper. Res. Soc. 40(6): 597–602 · Zbl 0669.90037
[9] Chen F., Federgruen A. and Zheng Y.S. (2001). Coordination mechanisms for a distribution system with one supplier and multiple retailers. Manage. Sci. 47(5): 693–708 · Zbl 1232.90109 · doi:10.1287/mnsc.47.5.693.10484
[10] Chen F., Federgruen A. and Zheng Y.S. (2001). Near-optimal pricing and replenishment strategies for a retail/distribution system. Oper. Res. 49(6): 839–853 · doi:10.1287/opre.49.6.839.10020
[11] Cherikh M. (2000). On the effect of centralisation on expected profits in a multi-location newsboy problem. J. Oper. Res. Soc. 51(6): 755–761 · Zbl 1055.90502
[12] Eppen G.D. (1979). Effects of centralization on expected costs in a multi-location newsboy problem. Manage. Sci. 25(5): 498–501 · Zbl 0419.90049 · doi:10.1287/mnsc.25.5.498
[13] Federgruen A. and Heching A. (2002). Multilocation combined pricing and inventory control. Manuf. Serv. Oper. Manage. 4(4): 275–295 · Zbl 0979.90004 · doi:10.1287/msom.4.4.275.5730
[14] Geunes J., Shen Z. and Romeijn H.E. (2004). Economic ordering decisions with market choice flexibility. Naval Res. Logist. 51: 117–136 · Zbl 1055.90006 · doi:10.1002/nav.10109
[15] Geunes J., Romeijn H.E. and Taaffe K. (2006). Requirements planning with pricing and order selection flexibility. Oper. Res. 54(2): 394–401 · Zbl 1167.90485 · doi:10.1287/opre.1050.0255
[16] Lau A. and Lau H. (1988). The newsboy problem with price-dependent demand distribution. IIE Trans. 20(2): 168–175 · doi:10.1080/07408178808966166
[17] Lau A. and Lau H. (2003). Effects of a demand-curve’s shape on the optimal solutions of a multi-echelon inventory/pricing model. Eur. J. Oper. Res. 147: 530–548 · Zbl 1026.90002 · doi:10.1016/S0377-2217(02)00291-6
[18] Layson S.K. (1994). Market opening under third-degree price discrimination. J. Ind. Econ. 42(3): 335–340 · doi:10.2307/2950575
[19] Lin C.T., Chen C.B. and Hsieh H.J. (2001). Effects of centralization on expected profits in a multi-location newsboy problem. J. Oper. Res. Soc. 52(6): 839–841 · Zbl 1181.90016 · doi:10.1057/palgrave.jors.2601077
[20] Mills E.S. (1959). Uncertainty and price theory. Quart. J. Econ. 73: 116–130 · doi:10.2307/1883828
[21] Petruzzi N.C. and Dada M. (1999). Pricing and the newsvendor problem: a review with extensions. Oper. Res. 47(2): 183–194 · Zbl 1005.90546 · doi:10.1287/opre.47.2.183
[22] Phlips L. (1988). Price discrimination: a survey of the theory. J. Econ. Surv. 2(2): 135–167 · doi:10.1111/j.1467-6419.1988.tb00040.x
[23] Pigou, A.C.: The Economics of Welfare. MacMillan and Co. (1920)
[24] Polatoglu L.H. (1991). Optimal order quantity and pricing decisions in single-period inventory systems. Int. J. Prod. Econ. 23: 175–185 · doi:10.1016/0925-5273(91)90060-7
[25] Porteus E.L. (1985). Investing in reduced set-ups in the EOQ model. Manage. Sci. 31: 998–1010 · Zbl 0609.90058 · doi:10.1287/mnsc.31.8.998
[26] Ray S., Gerchak Y. and Jewkes E.M. (2005). Joint pricing and inventory policies for make-to-stock products with deterministic price-sensitive demand. Int. J. Prod. Econ. 97: 143–158 · doi:10.1016/j.ijpe.2004.06.054
[27] Robinson, J.: The Economics of Imperfect Competition. Macmillan and Co. (1933)
[28] Ross, S.M.: Introduction to Probability Models. Academic Press (2006) · Zbl 1118.60002
[29] Schmalensee R. (1981). Output and welfare implications of monopolistic third-degree price discrimination, Am. Econ. Rev. 71(1): 242–247
[30] Shen Z.J., Coullard C. and Daskin M. (2003). A joint location-inventory model. Transport. Sci 37(1): 40–55
[31] Taaffe, K., Geunes, J., Romeijn, H.E.: Target market selection and marketing effort under uncertainty: the selective newsvendor. Eur. J. Oper. Res. (Forthcoming) · Zbl 1142.91498
[32] Tirole, J.: The Theory of Industrial Organization. MIT Press (1988) · Zbl 0664.90023
[33] Varian H.R. (1985). Price discrimination and social welfare. Am. Econ. Rev. 75(4): 870–875
[34] Viswanathan S. and Wang Q. (2003). Discount pricing decisions in distribution channels with price-sensitive demand. Eur. J. Oper. Res. 149: 571–587 · Zbl 1033.90006 · doi:10.1016/S0377-2217(02)00469-1
[35] Whitin T.M. (1955). Inventory control and price theory. Manage. Sci. 2: 61–68 · doi:10.1287/mnsc.2.1.61
[36] Young L. (1978). Price, inventory and the structure of uncertain demand. New Zeal. Oper. Res. 6(2): 157–177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.