zbMATH — the first resource for mathematics

Risk-sensitive capacity control in revenue management. (English) Zbl 1139.91014
Consider a single-leg flight of an airplane, where each customer requests a single seat, and neither cancellation nor no-shows are considered. The problem is to determine which exogenously arriving requests to accept or reject assuming that customer demand is independent between booking classes and of the controls being applied. The corresponding model is called the static capacity control model if demand for each booking class arrives in non-overlapping periods. The dynamic capacity control model allows passengers to arrive in any order.
In the paper, the authors extend both the static and the dynamic capacity control model in revenue management using the concept of a risk-sensitive Markov decision model in the spirit of R. A. Howard and J. E. Matheson [Manage. Sci., Theory 18, 356–369 (1972; Zbl 0238.90007)] for a decision-maker with an exponential utility function. They show that all well-known structural results of the expected revenue maximizing policy hold for the resulting risk-sensitive optimal policy as well. In particular, it is shown that an optimal booking policy can be characterized by protection levels, depending on the actual booking class and the remaining time. Moreover, monotonicity of the protection levels with respect to the booking class and the remaining time are proven.

91B06 Decision theory
91B30 Risk theory, insurance (MSC2010)
91B16 Utility theory
90C40 Markov and semi-Markov decision processes
Full Text: DOI
[1] Agrawal V, Seshadri S (2000) Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem. Manuf Serv Oper Manage 2(4):410–423 · doi:10.1287/msom.2.4.410.12339
[2] Barz C (2006) How does risk aversion affect optimal revenue management policies? A simulation study. In: Mattfeld D, Suhl L (eds) DSOR contributions to information systems, vol 4, pp 161–172
[3] Barz C, Waldmann K-H (2006) An application of Markov decision processes to the seat inventory control problem. In: Morlock M, Schwindt C, Trautmann N, Zimmermann J (eds) Perspectives on operations research–essays in honor of Klaus Neumann. Deutscher Universitäts-Verlag, Wiesbaden, pp 113–128
[4] Belobaba PP (1987a) Airline yield management. Transp Sci 21(2):63–73 · doi:10.1287/trsc.21.2.63
[5] Belobaba PP (1987b) Air travel demand and airline seat inventory management. PhD Thesis, Massachusetts Institute of Technology
[6] Belobaba PP, Weatherford LR (1996) Comparing decision rules that incorporate customer diversion in perishable asset revenue management situations. Decis Anal 27:343–363
[7] Bitran GR, Caldentey R (2003) An overview of pricing models for revenue management. Manuf Serv Oper Manage 5(3):203–229 · doi:10.1287/msom.
[8] Bouakiz M, Sobel MJ (1992) Inventory control with an exponential utility criterion. Oper Res 40(3):603–608 · Zbl 0764.90022 · doi:10.1287/opre.40.3.603
[9] Brumelle SL, McGill JI (1993) Airline seat allocation with multiple nested fare classes. Oper Res 41(1):127–137 · Zbl 0775.90148 · doi:10.1287/opre.41.1.127
[10] Chen X, Sim M, Simchi-Levi D, Sun P (2005) Risk aversion in inventory management. Working paper, Massachusetts Institute of Technology, Cambridge, MA · Zbl 1167.90317
[11] Coraluppi SP (1997) Optimal control of Markov decision processes for performance and robustness. PhD Thesis, University of Maryland
[12] Curry RE (1990) Optimal airline seat allocation with fare classes nested by origins and destinations. Transp Sci 24(3):193–204 · doi:10.1287/trsc.24.3.193
[13] Feng Y, Xiao B (1999) Maximizing revenues of perishable assets with a risk factor. Oper Res 47(2):337–341 · Zbl 1005.90539 · doi:10.1287/opre.47.2.337
[14] Howard R (1988) Decision analysis: practice and promise. Manage Sci 34(6):679–695 · doi:10.1287/mnsc.34.6.679
[15] Howard R, Matheson JE (1972) Risk-sensitive Markov decision processes. Manage Sci 18(7):356–369 · Zbl 0238.90007 · doi:10.1287/mnsc.18.7.356
[16] Kirkwood CW (2004) Approximating risk aversion in decision analysis applications. Decis Anal 1(1):55–72 · doi:10.1287/deca.
[17] Lancaster J (2003) The financial risk of airline revenue management. J Revenue Pricing Manage 2:158–165 · doi:10.1057/palgrave.rpm.5170061
[18] Lautenbacher CJ, Stidham S Jr (1999) The underlying Markov decision process in the single-leg airline yield management problem. Transp Sci 33(2):136–146 · Zbl 1003.90022 · doi:10.1287/trsc.33.2.136
[19] Lee TC, Hersh M (1993) A model for dynamic airline seat inventory control with multiple seat bookings. Transp Sci 27(3):252–265 · doi:10.1287/trsc.27.3.252
[20] Li MZF, Oum TH (2002) A note on the single leg, multifare seat allocation problem. Transp Sci 36(3):349–353 · Zbl 1134.90432 · doi:10.1287/trsc.36.3.349.7830
[21] Liang Y (1999) Solution to the continuous time dynamic yield management model. Transp Sci 33(1):117–123 · Zbl 1002.90031 · doi:10.1287/trsc.33.1.117
[22] Littlewood K (1972) Forecasting and control of passangers. In: 12th AGIFORS symposium proceedings, pp 95–117
[23] Mitra D, Wang Q (2003) Stochastic traffic engineering, ith applications to network revenue management. In: IEEE INFOCOM 2003–the conference on computer communications, vol 22(1), pp 396–405
[24] Mitra D, Wang Q (2005) Stochastic traffic engineering for demand uncertainty and risk-aware network revenue management. IEEE/ACM Trans Netw 13(2):221–233 · Zbl 05458782 · doi:10.1109/TNET.2005.845527
[25] Müller A (2000) Expected utility maximization of optimal stopping problems. Eur J Oper Res 122(1):101–114 · Zbl 1112.91310 · doi:10.1016/S0377-2217(99)00072-7
[26] Phillips RL (2005) Pricing and revenue optimization. Stanford Business Books, Stanford
[27] Pratt JW (1964) Risk aversion in the small and in the large. Econometrica 32(1/2):122–136 · Zbl 0132.13906 · doi:10.2307/1913738
[28] Roberts AW, Varberg DE (1973) Convex functions. Academic, London
[29] Robinson LW (1995) Optimal and approximate control policies for airline booking with sequential nonmonotonic fare classes. Oper Res 43(2):252–263 · Zbl 0832.90072 · doi:10.1287/opre.43.2.252
[30] Stidham S Jr (1978) Socially and individually optimal control of arrivals to a GI/M/1 queue. Manage Sci 24(15):1598–1610 · Zbl 0493.90040 · doi:10.1287/mnsc.24.15.1598
[31] Talluri KT, van Ryzin GJ (2004b) The theory and practice of revenue management. Kluwer Academic Publishers, Dordrecht · Zbl 1083.90024
[32] Weatherford LR (2004) EMSR versus EMSU: revenue or utility? J Revenue Pricing Manage 3(3):277–284 · doi:10.1057/palgrave.rpm.5170114
[33] Wollmer RD (1992) An airline management model for a single leg route when lower fare classes book first. Oper Res 40(1):26–37 · Zbl 0825.90664 · doi:10.1287/opre.40.1.26
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.