×

zbMATH — the first resource for mathematics

A new analytical approximation formula for the optimal exercise boundary of American put options. (English) Zbl 1140.91415

MSC:
91G20 Derivative securities (option pricing, hedging, etc.)
35K20 Initial-boundary value problems for second-order parabolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allegretto W., Discrete and Continuous Dynamical Systems, Series B., Applications and Algorithm 8 pp 127–
[2] DOI: 10.1080/07362999108809230 · Zbl 0729.60056 · doi:10.1080/07362999108809230
[3] DOI: 10.1111/j.1540-6261.1987.tb02569.x · doi:10.1111/j.1540-6261.1987.tb02569.x
[4] DOI: 10.1086/260062 · Zbl 1092.91524 · doi:10.1086/260062
[5] DOI: 10.1111/j.1467-9965.1995.tb00103.x · Zbl 0866.90029 · doi:10.1111/j.1467-9965.1995.tb00103.x
[6] DOI: 10.2307/2326779 · doi:10.2307/2326779
[7] DOI: 10.1093/rfs/9.4.1211 · doi:10.1093/rfs/9.4.1211
[8] J. W. Brown and R. V. Churchill, Complex Variables and Applications (McGraw-Hill, Inc., 1996) p. 235, 183 and 213.
[9] Bunch D. S., Journal of Finance 5 pp 2333– · Zbl 0030.06302
[10] DOI: 10.1093/rfs/11.3.597 · Zbl 1386.91134 · doi:10.1093/rfs/11.3.597
[11] DOI: 10.1111/j.1467-9965.1992.tb00040.x · Zbl 0900.90004 · doi:10.1111/j.1467-9965.1992.tb00040.x
[12] DOI: 10.1016/0304-405X(79)90015-1 · Zbl 1131.91333 · doi:10.1016/0304-405X(79)90015-1
[13] Fulford G. R., Industrial Mathematics: Case Studies in the Diffusion of Heat and Matter (2002) · Zbl 0982.00007
[14] DOI: 10.1111/j.1540-6261.1984.tb04921.x · doi:10.1111/j.1540-6261.1984.tb04921.x
[15] Grant D., Journal of Financial Engineering 5 pp 211– · JFM 02.0361.06
[16] S. C. Gupta, The Classical Stefan Problem: Basic Concepts, Modelling and Analysis (Elsevier, Amsterdam, Boston, 2003) pp. 18–23.
[17] F. B. Hildebrand, Advanced Calculus for Applications (Prentice-Hall, 1976) p. 57.
[18] Hill J. M., Pitman Monographs and Surveys in Pure and Applied Mathematics 31 (1987)
[19] Hon Y. C., Journal of Financial Engineering 8 pp 31–
[20] DOI: 10.1093/rfs/9.1.277 · doi:10.1093/rfs/9.1.277
[21] DOI: 10.1111/j.1467-9965.1991.tb00007.x · Zbl 0900.90109 · doi:10.1111/j.1467-9965.1991.tb00007.x
[22] DOI: 10.2307/2330809 · doi:10.2307/2330809
[23] DOI: 10.1093/rfs/11.3.627 · doi:10.1093/rfs/11.3.627
[24] DOI: 10.1093/rfs/3.4.547 · doi:10.1093/rfs/3.4.547
[25] Kuske R. A., Applied Mathematical Studies 5 pp 107–
[26] DOI: 10.1007/BF01448358 · Zbl 0699.90010 · doi:10.1007/BF01448358
[27] DOI: 10.1093/rfs/14.1.113 · Zbl 1386.91144 · doi:10.1093/rfs/14.1.113
[28] MacMillan L., Advances in Futures and Options Research 1 pp 119–
[29] McKean H. P., Industrial Management Review 6 pp 32–
[30] DOI: 10.2307/3003143 · doi:10.2307/3003143
[31] Papoulis A., Quart. Appl. Math. 14 pp 405–
[32] Samuelson P. A., Industrial Management Review 6 pp 13–
[33] DOI: 10.1016/0304-405X(77)90037-X · doi:10.1016/0304-405X(77)90037-X
[34] Stefan N., S.-B. Wien. Akad. Mat. Natur. 98 pp 173–
[35] DOI: 10.1145/361953.361969 · doi:10.1145/361953.361969
[36] Stamicar R., Canadian Applied Mathematics Quarterly 7 pp 427–
[37] D. Tavella and C. Randall, Pricing Financial Instruments, The Finite Difference Method (John Wiley and Sons, Inc, New York, 2000) p. 88.
[38] DOI: 10.1002/(SICI)1099-1204(199805/06)11:3<153::AID-JNM299>3.0.CO;2-C · Zbl 0924.65135 · doi:10.1002/(SICI)1099-1204(199805/06)11:3<153::AID-JNM299>3.0.CO;2-C
[39] M. van Dyke, Perturbation Methods in Fluid Mechanics (Academic Press, 1965) pp. 30–32.
[40] DOI: 10.1007/BF00250676 · Zbl 0336.35047 · doi:10.1007/BF00250676
[41] DOI: 10.1017/CBO9780511812545 · Zbl 0842.90008 · doi:10.1017/CBO9780511812545
[42] Wu L., Journal of Financial Engineering 6 pp 83–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.