×

Dynamics of a delay differential equation model of hepatitis B virus infection. (English) Zbl 1140.92014

Summary: We formulate and systematically study the global dynamics of a simple model of hepatitis B virus in terms of delay differential equations. This model has two important and novel features compared to the well-known basic virus model in the literature. Specifically, it makes use of the more realistic standard incidence function and explicitly incorporates a time delay in virus production. As a result, the infection reproduction number is no longer dependent on the patient liver size (number of initial healthy liver cells). For this model, the existence and the component values of the endemic steady state are explicitly dependent on the time delay. In certain biologically interesting limiting scenarios, a globally attractive endemic equilibrium can exist regardless of the time delay length.

MSC:

92C60 Medical epidemiology
34K20 Stability theory of functional-differential equations
37N25 Dynamical systems in biology
92C50 Medical applications (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/S0025-5564(97)10015-3 · Zbl 0946.92012
[2] DOI: 10.1016/S0362-546X(99)00285-0 · Zbl 1015.92049
[3] DOI: 10.1016/j.jtbi.2007.02.017
[4] Cotran R. S., Robbin’s Pathologic Basis of Disease, 6. ed. (2000)
[5] DOI: 10.1016/S1386-6532(05)80014-9
[6] DOI: 10.1007/s00285-002-0191-5 · Zbl 1023.92011
[7] DOI: 10.1007/s00285-004-0278-2 · Zbl 1055.92043
[8] DOI: 10.1146/annurev.pathol.1.110304.100230
[9] DOI: 10.1007/s00285-002-0165-7 · Zbl 1015.92042
[10] Hwang T.-W., Math. Biosci. and Engineering 2 pp 743– (2005) · Zbl 1108.34045
[11] Kuang Y., Delay Differential Equations with Applications in Population Dynamics (1993) · Zbl 0777.34002
[12] DOI: 10.1016/j.jhep.2007.01.007
[13] DOI: 10.1056/NEJMoa043470
[14] DOI: 10.1016/S1386-6532(05)00384-7
[15] DOI: 10.1137/S0036139902406905 · Zbl 1035.34045
[16] DOI: 10.1016/S1386-6532(05)80025-3
[17] DOI: 10.1016/j.jhep.2005.11.036
[18] Markus, L. 1956.Asymptotically autonomous differential systems, Contributions to the theory of nonlinear oscillations, Annals of Mathematics Studies, No. 36, Vol. 3, 17–29. Princeton, NJ: Princeton University Press. · Zbl 0075.27002
[19] Min, L. Q., Su, Y. M. and Kuang, Y. 2007, to appear in the proceedings of ICMB-4. Mathematical analysis of a basic virus infection model with application to HBV infection, World Scientific.
[20] DOI: 10.1016/S0168-1702(01)00382-3
[21] DOI: 10.1002/hep.21364
[22] Nowak M. A., Proc. Nat. Acad. Sci 93 pp 4398– (1996)
[23] Nowak M. A., Viral Dynamics (2000)
[24] DOI: 10.1016/0025-5564(93)90043-A · Zbl 0796.92016
[25] DOI: 10.1137/S0036144598335107 · Zbl 1078.92502
[26] DOI: 10.1002/jmv.10096
[27] DOI: 10.1128/MMBR.64.1.51-68.2000
[28] DOI: 10.1016/j.jhep.2006.01.001
[29] Smith H. L., Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (1995) · Zbl 0821.34003
[30] DOI: 10.1137/0524026 · Zbl 0774.34030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.