×

zbMATH — the first resource for mathematics

Distributed robust \(H_\infty \) consensus control in directed networks of agents with time-delay. (English) Zbl 1140.93355
Summary: This paper investigates consensus problems for directed networks of agents with external disturbances and model uncertainty on fixed and switching topologies. Both networks with and without time-delay are taken into consideration. In doing the analysis, we first perform a model transformation and turn the original system into a reduced-order system. Based on this reduced-order system, we then present conditions under which all agents reach consensus with the desired \(H_\infty \) performance. Finally, simulation results are provided to demonstrate the effectiveness of our theoretical results.

MSC:
93B36 \(H^\infty\)-control
93A15 Large-scale systems
93C41 Control/observation systems with incomplete information
93B11 System structure simplification
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Tsitsiklis, J.N.; Bertsekas, D.P.; Athans, M., Distributed asynchronous deterministic and stochastic gradient optimization algorithms, IEEE trans. automat. control, 31, 9, 803-812, (1986) · Zbl 0602.90120
[2] Bertsekas, D.P.; Tsitsiklis, J., Parallel and distributed computation, (1989), Prentice-Hall Upper Saddle River, NJ · Zbl 0743.65107
[3] Lynch, N.A., Distributed algorithms, (1997), Morgan Kaufmann San Mateo, CA
[4] Vicsek, T.; Cziroók, A.; Ben-Jacob, E.; Cohen, O.; Shochet, I., Novel type of phase transition in a system of self-driven particles, Phys. rev. lett., 75, 6, 1226-1229, (1995)
[5] Jadbabaie, A.; Lin, J.; Morse, A.S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE trans. automat. control, 48, 6, 988-1001, (2003) · Zbl 1364.93514
[6] Moreau, L., Stability of multi-agent systems with time-dependent communication links, IEEE trans. automat. control, 50, 2, 169-182, (2005) · Zbl 1365.93268
[7] Olfati-Saber, R.; Murray, R.M., Consensus problems in networks of agents with switching topology and time-delays, IEEE trans. automat. control, 49, 9, 1520-1533, (2004) · Zbl 1365.93301
[8] Olfati-Saber, R.; Fax, J.A.; Murray, R.M., Consensus and cooperation in networked multi-agent systems, Proc. IEEE, 95, 1, 215-233, (2007) · Zbl 1376.68138
[9] Fax, J.A.; Murray, R.M., Information flow and cooperative control of vehicle formations, IEEE trans. automat. control, 49, 9, 1465-1476, (2004) · Zbl 1365.90056
[10] Lafferriere, G.; Williams, A; Caughman, J.; Veerman, J.J.P., Decentralized control of vehicle formations, System control lett., 54, 9, 899-910, (2005) · Zbl 1129.93303
[11] D.B. Kingston, R.W. Beard, Discrete-time average-consensus under switching network topologies, in: Proceedings of IEEE Conference on Decision and Control, 2005, pp. 2016-2021
[12] Ren, W.; Beard, R.W., Consensus seeking in multi-agent systems under dynamically changing interaction topologies, IEEE trans. automat. control, 50, 5, 655-661, (2005) · Zbl 1365.93302
[13] W. Ren, R.W. Beard, E.M. Atkins, A survey of consensus problem in multiagent coordination, in: Proceedings of the American Control Conference, 2005, pp. 1859-1864
[14] Olfati-Saber, R., Flocking for multi-agent dynamic systems: algorithms and theory, IEEE trans. automat. control, 51, 3, 410-420, (2006) · Zbl 1366.93391
[15] H. Tanner, A. Jadbabaie, G. Pappas, Stable flocking of mobile agents, part II: Dynamic topology, in: Proceedings of IEEE Conference on Decision and Control, 2003, pp. 2016-2021
[16] Moshtagh, N.; Jadbabaie, A., Distributed geodesic control laws for flocking of nonholonomic agents, IEEE trans. automat. control., 52, 4, 681-686, (2007) · Zbl 1366.93390
[17] Dimarogonas, D.V.; Kyriakopoulos, Kostas J., On the rendezvous problem for multiple nonholonomic agents, IEEE trans. automat. control, 52, 5, 916-922, (2007) · Zbl 1366.93401
[18] D.V. Dimarogonas, Kostas J. Kyriakopoulos, Connectivity preserving distributed swarm aggregation for multiple kinematic agents, in: Proceedings of IEEE Conference on Decision and Control, 2007, pp. 2913-2918
[19] M. Ji, M. Egerstedt, Distributed formation control while preserving connectedness, in: Proceedings of IEEE Conference on Decision and Control, 2006, pp. 5962-5967
[20] Hong, Y.; Gao, L.; Cheng, D.; Hu, J., Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 42, 7, 1177-1182, (2006) · Zbl 1117.93300
[21] Ögren, P.; Fiorelli, E.; Leonard, N.E., Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment, IEEE trans. automat. control, 49, 8, 1292-1302, (2004) · Zbl 1365.93243
[22] Xiao, L.; Boyd, S., Fast linear iterations for distributed averaging, System control lett., 53, 1, 65-78, (2004) · Zbl 1157.90347
[23] Xiao, L.; Boyd, S.; Kimb, S.J., Distributed average consensus with least-Mean-square deviation, J. parallel distr. comput., 67, 1, 33-46, (2007) · Zbl 1109.68019
[24] P. Bliman, G. Ferrari-Trecate, Average consensus problems in networks of agents with delayed communications, in: Proceedings of IEEE Conference on Decision and Control, 2005, pp. 7066-7071
[25] L. Fang, P.J. Antsaklis, Information consensus of asynchronous discrete-time multi-agent systems, in: Proceedings of the American Control Conference, 2005, pp. 1883-1888
[26] M. Cao, A.S. Morse, B.D.O. Anderson, Agreeing asynchronously: Announcement of results, in: Proceedings of IEEE Conference on Decision and Control, 2006, pp. 4301-4306
[27] M. Cao, A.S. Morse, B.D.O. Anderson, Reaching an agreement using delayed information, in: Proceedings of IEEE Conference on Decision and Control, 2006, pp. 3375-3380
[28] Kim, Y.; Mesbahi, M., On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian, IEEE trans. automat. control, 51, 1, 116-120, (2007) · Zbl 1366.05069
[29] P. Lin, Y. Jia, J. Du, S. Yuan, Distributed consensus control for networks of second-order agents with fixed topology and time-delay, in: Proceedings of the Chinese Control Conference, 2007, pp. 2-577-2-581
[30] Lin, P.; Jia, Y., Average-consensus in networks of multi-agents with both switching topology and coupling time-delay, Physica A, 387, 1, 303-313, (2008)
[31] P. Lin, Y. Jia, J. Du, S. Yuan, Distributed control of multi-agent systems with second-order agent dynamics and delay-dependent communications, Asian J. Control 10 (2) (2008) (in press)
[32] Godsil, C.; Royle, G., Algebraic graph theory, (2001), Springer-Verlag New York · Zbl 0968.05002
[33] Horn, R.A.; Johnson, C.R., Matrix analysis, (1987), Cambridge Univ. Press Cambridge
[34] Dullerud, G.E.; Paganini, F., ()
[35] K.C. Goh, L. Turan, M.G. Safonov, G.P. Papavassilopoulos, J.H. Ly, Baffine matrix inequality properties and computational methods, in: Proceedings of the American Control Conference, 1994, pp. 850-855
[36] S. Ibaraki, M. Tomizuka, Rank minimization approach for solving BMI problems with random search, in: Proceedings of the American Control Conference, 2001, pp. 1870-1875
[37] Kanev, S.; Scherer, C.; Verhaegen, M.; De Schutter, B., Robust output-feedback controller design via local BMI optimization, Automatica, 40, 7, 1115-1127, (2004) · Zbl 1051.93042
[38] Sastry, S., Nonlinear systems: analysis, stability, and control, (1999), Springer
[39] Hale, J., Theory of functional differential equations, (1977), Springer-Verlag New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.