×

zbMATH — the first resource for mathematics

Uncertainty measures for interval type-2 fuzzy sets. (English) Zbl 1141.28010
Based on the representation theorem for interval type-2 fuzzy sets, 4 types of new uncertainty measures are introduced and discussed, namely cardinality, fuzziness, variance and skewness. Note that the first uncertainty measures for this type of fuzzy sets, namely the centroid, was introduced already in [N. N. Karnik and J. M. Mendel, Inf. Sci. 132, No. 1–4, 195–220 (2001; Zbl 0982.03030)]. The authors give formulae for computing the introduced uncertainty measures, discuss their properties and include several illustrative examples.

MSC:
28E10 Fuzzy measure theory
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Astudillo, L.; Castillo, O.; Aguilar, L.T., Intelligent control for a perturbed autonomous wheeled mobile robot: a type-2 fuzzy logic approach, Journal of nonlinear studies, 14, 3, 37-48, (2007) · Zbl 1117.93048
[2] Atanassov, K.; Gargov, G., Interval valued intuitionistic fuzzy sets, Fuzzy sets and systems, 31, 343-349, (1989) · Zbl 0674.03017
[3] S. Auephanwiriyakul, A. Adrian, J.M. Keller, Type-2 fuzzy set analysis in management surveys, in: Proceedings of the FUZZ-IEEE, Honolulu, HI, 2002, pp. 1321-1325.
[4] Baguley, P.; Page, T.; Koliza, V.; Maropoulos, P., Time to market prediction using type-2 fuzzy sets, Journal of manufacturing technology management, 17, 4, 513-520, (2006)
[5] Blanchard, N., Cardinal and ordinal theories about fuzzy sets, (), 149-157
[6] P.P. Bonissone, A pattern recognition approach to the problem of linguistic approximation, in: Proceedings of the IEEE International Conference on Cybernetics and Society, Denver, CO, 1979, pp. 793-798.
[7] P.P. Bonissone, A fuzzy sets based linguistic approach: theory and applications, in: Proceedings of the 12th Winter Simulation Conference, Orlando, FL, 1980, pp. 99-111.
[8] A. Bouchachia, R. Mittermeir, A neural cascade architecture for document retrieval, in: Proceedings of the International Joint Conference Neural Networks, vol. 3, Portland, OR, 2003, pp. 1915-1920.
[9] Burillo, P.; Bustince, H., Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy sets and systems, 78, 305-316, (1996) · Zbl 0872.94061
[10] Carlsson, C.; Fullér, R., On possibilistic Mean value and variance of fuzzy numbers, Fuzzy sets and systems, 122, 315-326, (2001) · Zbl 1016.94047
[11] O. Castillo, N. Cazarez, P. Melli, Design of stable type-2 fuzzy logic controllers based on a fuzzy Lyapunov approach, in: Proceedings of the FUZZ-IEEE, Vancouver, Canada, July 2006, pp. 2331-2336.
[12] O. Castillo, P. Melin, Adaptive noise cancellation using type-2 fuzzy logic and neural networks, in: Proceedings of the FUZZ-IEEE, vol. 2, Budapest, Hungary, 2004, pp. 1093-1098.
[13] O. Castillo, P. Melin, Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-linear dynamic plants, in: Proceedings of the North American Fuzzy Information Processing Society (NAFIPS), Ann Arbor, MI, 2005, pp. 247-251.
[14] Christensen, R., Entropy minimax multivariate statistical modeling I: theory, International journal of general systems, 11, 231-277, (1985)
[15] Christensen, R., Entropy minimax multivariate statistical modeling II: applications, International journal of general systems, 12, 3, 227-305, (1985)
[16] Cornelis, C.; Kerre, E., Inclusion measures in intuitionistic fuzzy set theory, Lecture notes in computer science, 2711, 345-356, (2004) · Zbl 1274.03081
[17] Cross, V.V.; Sudkamp, T.A., Similarity and compatibility in fuzzy set theory: assessment and applications, (2002), Physica-Verlag Heidelberg, NY · Zbl 0992.03066
[18] De Luca, A.; Termini, S., A definition of nonprobabilistic entropy in the setting of fuzzy sets theory, Information and computation, 20, 301-312, (1972) · Zbl 0239.94028
[19] Dubois, D.; Prade, H., Fuzzy cardinality and the modeling of imprecise quantification, Fuzzy sets and systems, 16, 199-230, (1985) · Zbl 0601.03006
[20] J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, S. Rojas, A type-2 fuzzy controller for tracking mobile objects in the context of robotic soccer games, in: Proceedings of the FUZZ-IEEE, Reno, NV, 2005, pp. 359-364.
[21] Geer, J.F.; Klir, G.J., A mathematical analysis of information preserving transformations between probabilistic and possibilistic formulations of uncertainty, International journal of general systems, 20, 2, 143-176, (1992) · Zbl 0743.94029
[22] Gottwald, S., A note on fuzzy cardinals, Kybernetika, 16, 156-158, (1980) · Zbl 0434.03038
[23] Gu, L.; Zhang, Y.Q., Web shopping expert using new interval type-2 fuzzy reasoning, Soft computing, 11, 8, 741-751, (2007)
[24] Hagras, H., Type-2 FLCs: a new generation of fuzzy controllers, IEEE computational intelligence magazine, 2, 1, 30-43, (2007)
[25] D. Harmanec, Measures of uncertainty and information, http://www.sipta.org/documentation/summary_measures/main.html (1999).
[26] Higashi, M.; Klir, G., Measures of uncertainty and information based on possibility distributions, fuzzy sets for intelligent systems, (1993), Morgan Kaufmann Publishers San Mateo, CA, pp. 217-232
[27] Jang, L.-C.; Ralescu, D., Cardinality concepts for type-two fuzzy sets, Fuzzy sets and systems, 118, 479-487, (2001) · Zbl 0972.03054
[28] Karnik, N.N.; Mendel, J.M., Centroid of a type-2 fuzzy set, Information sciences, 132, 195-220, (2001) · Zbl 0982.03030
[29] Kaufmann, A., Introduction to the theory of fuzzy sets, (1975), Academic Press NY · Zbl 0332.02063
[30] Kaufmann, A., Introduction a la theorie des sous-ensembles flous, () · Zbl 0302.02023
[31] E.P. Klement, On the cardinality of fuzzy sets, in: Proceedings of the 6th European Meeting on Cybernetics and Systems Research, Vienna, 1982, pp. 701-704.
[32] Klir, G.J., A principle of uncertainty and information invariance, International journal of general systems, 17, 2-3, 249-275, (1990) · Zbl 0703.94026
[33] Klir, G.J., Principles of uncertainty: what are they? why do we need them?, Fuzzy sets and systems, 74, 15-31, (1995)
[34] Klir, G.J.; Folger, T.A., Fuzzy sets, uncertainty, and information, (1988), Prentice-Hall Englewood Cliffs, NJ · Zbl 0675.94025
[35] Klir, G.J.; Parviz, B., Probability – possibility transformations: a comparison, International journal of general systems, 21, 3, 291-310, (1992) · Zbl 0768.60003
[36] Klir, G.J.; Yuan, B., Fuzzy sets and fuzzy logic: theory and applications, (1995), Prentice-Hall Upper Saddle River, NJ · Zbl 0915.03001
[37] Knopfmacher, J., On measures of fuzziness, Journal of mathematics analysis and applications, 49, 529-534, (1975) · Zbl 0308.02061
[38] C.-H. Lee, Y.-C. Lin, Control of nonlinear uncertain systems using type-2 fuzzy neural network and adaptive filter, in: Proceedings of the 2004 IEEE International Conference on Networking, Sensing and Control, vol. 2, Taipei, Taiwan, 2004, pp. 1177-1182.
[39] Lee, E.; Li, R., Comparison of fuzzy numbers based on the probability measure of fuzzy events, Computers & mathematics with applications, 15, 887-896, (1988) · Zbl 0654.60008
[40] Q. Liang, L. Wang, Sensed signal strength forecasting for wireless sensors using interval type-2 fuzzy logic system, in: Proceedings of the FUZZ-IEEE, Reno, NV, 2005, pp. 25-30.
[41] P.-Z. Lin, C.-F. Hsu, T.-T. Lee, Type-2 fuzzy logic controller design for buck DC-DC converters, in: Proceedings of the FUZZ-IEEE, Reno, NV, 2005, pp. 365-370.
[42] F. Liu, J.M. Mendel, An interval approach to fuzzistics for interval type-2 fuzzy sets, IEEE Transactions on Fuzzy Systems, submitted for publication.
[43] C. Lynch, H. Hagras, V. Callaghan, Using uncertainty bounds in the design of an embedded real-time type-2 neuro-fuzzy speed controller for marine diesel engines, in: Proceedings of the FUZZ-IEEE, Vancouver, Canada, 2006, pp. 7217-7224.
[44] Melin, P.; Castillo, O., An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory, Information sciences, 177, 7, 1543-1557, (2007)
[45] Melin, P.; Urias, J.; Solano, D.; Soto, M.; Lopez, M.; Castillo, O., Voice recognition with neural networks, type-2 fuzzy logic and genetic algorithms, Journal of engineering letters, 13, 2, 108-116, (2006)
[46] Mendel, J.M., Rule-based fuzzy logic systems: introduction and new directions, (2001), Prentice-Hall Upper Saddle River, NJ · Zbl 0978.03019
[47] Mendel, J.M., Advances in type-2 fuzzy sets and systems, Information sciences, 177, 1, 84-110, (2007) · Zbl 1117.03060
[48] J.M. Mendel, H. Hagras, R.I. John, Standard background material about interval type-2 fuzzy logic systems that can be used by all authors, http://ieee-cis.org/_files/standards.t2.win.pdf.
[49] Mendel, J.M.; John, R.I., Type-2 fuzzy sets made simple, IEEE transactions on fuzzy systems, 10, 2, 117-127, (2002)
[50] J.M. Mendel, H. Wu, Centroid uncertainty bounds for interval type-2 fuzzy sets: Forward and inverse problems, in: Proceedings of the FUZZ-IEEE, vol. 2, Budapest, Hungary, 2004, pp. 947-952.
[51] Mendel, J.M.; Wu, H., New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule, Information sciences, 177, 360-377, (2007) · Zbl 1111.68134
[52] Niewiadomski, A.; Bartyzel, M., Elements of type-2 semantics in summarizing databases, Lecture notes in artificial intelligence, 4029, 278-287, (2006)
[53] A. Niewiadomski, P.S. Szczepaniak, News generating based on type-2 linguistic summaries of databases, in: Proceedings of the IPMU, Paris, France, 2006, pp. 1324-1331.
[54] Own, C.-M.; Tsai, H.-H.; Yu, P.-T.; Lee, Y.-J., Adaptive type-2 fuzzy Median filter design for removal of impulse noise, Imaging science, 54, 1, 3-18, (2006)
[55] T. Ozen, J.M. Garibaldi, Effect of type-2 fuzzy membership function shape on modelling variation in human decision making, in: Proceedings of the FUZZ-IEEE, vol. 2, Budapest, Hungary, 2004, pp. 971-976.
[56] Paris, J.B., The uncertain reasoner’s companion - A mathematical perspective, (1994), Cambridge University Press · Zbl 0838.68104
[57] Rhee, F.C.-H., Uncertainty fuzzy clustering: insights and recommendations, IEEE computational intelligence magazine, 2, 1, 44-56, (2007)
[58] Sepúlveda, R.; Castillo, O.; Melin, P.; Rodrı´guez-Dı´az, A.; Montiel, O., Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic, Information sciences, 177, 10, 2023-2048, (2007)
[59] Sevastjanov, P.; Figat, P., Aggregation of aggregating modes in MCDM: synthesis of type 2 and level 2 fuzzy sets, Omega, 35, 5, 505-523, (2007)
[60] H. Shu, Q. Liang, Wireless sensor network lifetime analysis using interval type-2 fuzzy logic systems, in: Proceedings of the FUZZ-IEEE, Reno, NV, 2005, pp. 19-24.
[61] P. Subasic, M. Nakatsuyama, A new representational framework for fuzzy sets, in: Proceedings of the FUZZ-IEEE, Catalonia, Spain, 1997, pp. 1601-1606.
[62] Szmidt, E.; Kacprzyk, J., Entropy for intuitionistic fuzzy sets, Fuzzy sets and systems, 118, 467-477, (2001) · Zbl 1045.94007
[63] Vlachos, I.; Sergiadis, G., Submethood, entropy, and cardinality for interval-valued fuzzy sets – an algebraic derivation, Fuzzy sets and systems, 158, 1384-1396, (2007) · Zbl 1122.03055
[64] Wenstøp, F., Quantitative analysis with linguistic values, Fuzzy sets and systems, 4, 99-115, (1980) · Zbl 0441.68094
[65] Wonneberge, S., Generalization of an invertible mapping between probability and possibility, Fuzzy sets and systems, 64, 2, 229-240, (1994)
[66] D. Wu, J.M. Mendel, Aggregation using the linguistic weighted average and interval type-2 fuzzy sets, IEEE Transactions on Fuzzy Systems, in press.
[67] D. Wu, J.M. Mendel, Cardinality, fuzziness, variance and skewness of interval type-2 fuzzy sets, in: Proceedings of the First IEEE Symposium on Foundations of Computational Intelligence, Honolulu, HI, 2007, pp. 375-382.
[68] D. Wu, J.M. Mendel, Enhanced Karnik-Mendel algorithms for interval type-2 fuzzy sets and systems, in: Proceedings of the NAFIPS, San Diego, CA, 2007.
[69] D. Wu, J.M. Mendel, A vector similarity measure for linguistic approximation: interval type-2 and type-1 fuzzy sets, Information Sciences, in press, doi:10.1016/j.ins.2007.04.014. · Zbl 1126.68612
[70] Wu, D.; Tan, W.W., Genetic learning and performance evaluation of type-2 fuzzy logic controllers, International journal of engineering applications of artificial intelligence, 19, 8, 829-841, (2006)
[71] Wu, D.; Tan, W.W., A simplified type-2 fuzzy controller for real-time control, ISA transactions, 15, 4, 503-516, (2006)
[72] H. Wu, J.M. Mendel, Antecedent connector word models for interval type-2 fuzzy logic systems, in: Proceedings of the FUZZ-IEEE, vol. 2, Budapest, Hungary, 2004, pp. 1099-1104.
[73] Wygralak, M., A new approach to the fuzzy cardinality of finite fuzzy sets, Busefal, 15, 72-75, (1983) · Zbl 0531.04001
[74] Wygralak, M., Cardinalities of fuzzy sets, (2003), Springer Heidelberg · Zbl 1028.03043
[75] Yager, R.R., A measurement-informational discussion of fuzzy union and fuzzy intersection, International journal of man – machine studies, 11, 189-200, (1979) · Zbl 0403.03044
[76] Yager, R.R., Fuzzy subsets of type-2 in decisions, Journal of cybernetics, 10, 137-159, (1980)
[77] R.R. Yager, Quantified propositions in a linguistic logic, in: Proceedings of the 2nd International Seminar on Fuzzy Set Theory, Linz, Austria, 1980, pp. 69-124.
[78] Zadeh, L., Fuzzy sets and information granularity, (), 3-18
[79] Zadeh, L.A., The concept of a linguistic variable and its application to approximate reasoning - 1, Information sciences, 8, 199-249, (1975) · Zbl 0397.68071
[80] Zadeh, L.A., PRUF, a meaning representation language for natural languages, International journal of man – machine studies, 10, 395-460, (1978) · Zbl 0406.68063
[81] Zadeh, L.A., A theory of approximate reasoning, (), 149-194
[82] Zadeh, L.A., Possibility theory and soft data analysis, (), 69-129
[83] Zadeh, L.A., Test-score semantics for natural languages and meaning representation via PRUF, (), 281-349, (chapter 1)
[84] L.A. Zadeh, Fuzzy probabilities and their role in decision analysis, in: Proceedings of the IFAC Symposium on Theory and Application of Digital Control, New Delhi, 1982, pp. 15-23. · Zbl 0532.90003
[85] Zadeh, L.A., A computational approach to fuzzy quantifiers in natural languages, Computers and mathematics with applications, 9, 149-184, (1983) · Zbl 0517.94028
[86] Zadeh, L.A., Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy sets and systems, 19, 111-127, (1997) · Zbl 0988.03040
[87] Zadeh, L.A., Toward a generalized theory of uncertainty (GTU) - an outline, Information sciences, 172, 1-40, (2005) · Zbl 1074.94021
[88] Zeng, J.; Liu, Z.-Q., Type-2 fuzzy hidden Markov models and their applications to speech recognition, IEEE transactions on fuzzy systems, 14, 3, 454-467, (2006)
[89] Zeng, W.; Li, H., Relationship between similarity measure and entropy of interval valued fuzzy sets, Fuzzy sets and systems, 157, 1477-1484, (2006) · Zbl 1093.94038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.