×

Application of variational iteration method to the generalized Burgers-Huxley equation. (English) Zbl 1141.49006

Summary: He’s Variational Iteration Method (VIM) is applied to the generalized Burgers-Huxley equation. The VIM produces an approximate solution of the equation without any discretization. The VIM is based on the incorporation of a general Lagrange multiplier in the construction of correction functional for the equation. Comparisons with the Adomian decomposition method (ADM) reveal that the VIM is very effective and convenient.

MSC:

49J40 Variational inequalities
35Q53 KdV equations (Korteweg-de Vries equations)

Software:

MACSYMA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Wang, X.Y., Exact and explicit solitary wave solutions for the generalized Fisher equation, Phys lett A, 131, 4/5, 277-279, (1988)
[2] Jeffrey, A.; Mohamad, M.N.B., Exact solutions to the kdv – burgers equation, Wave motion, 14, 369-375, (1991) · Zbl 0833.35124
[3] Wadati, M., The exact solution of the modified korteweg – de Vries equation, J phys soc jpn, 32, 1681-1687, (1972)
[4] Kivshar, Y.S.; Pelinovsky, D.E., Self-focusing and transverse instabilities of solitary waves, Phys rep, 331, 117-195, (2000)
[5] Hereman, W.; Takaoka, M., Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA, J phys A, 23, 4805-4822, (1990) · Zbl 0719.35085
[6] Javidi, M., A numerical solution of the generalized burger’s – huxley equation by pseudospectral method and darvishi’s preconditioning, Appl math comput, 175, 1619-1628, (1990) · Zbl 1118.65110
[7] Javidi, M., A numerical solution of the generalized burger’s – huxley equation by spectral collocation method, Appl math comput, 178, 2, 338-344, (2006) · Zbl 1100.65081
[8] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer Academic Boston · Zbl 0802.65122
[9] Hashim I, Noorani MSM, Batiha B. A note on the Adomian decomposition method for the generalized Huxley equation. Appl Math Comput, doi:10.1016/16.amc.2006.03.011, in press. · Zbl 1173.65340
[10] Hashim, I.; Noorani, M.S.M.; Al-Hadidi, M.R.S., Solving the generalized burgers – huxley equation using the Adomian decomposition method, Math comput model, 43, 1404-1411, (2006) · Zbl 1133.65083
[11] He, J.H., Application of homotopy perturbation method to nonlinear wave equations, Chaos, solitons & fractals, 26, 3, 695-700, (2005) · Zbl 1072.35502
[12] He, J.H., Homotopy perturbation method for bifurcation of nonlinear problems, Int J nonlin sci numer simul, 6, 2, 207-208, (2005) · Zbl 1401.65085
[13] He, J.H., Limit cycle and bifurcation of nonlinear problems, Chaos, solitons & fractals, 26, 3, 827-833, (2005) · Zbl 1093.34520
[14] He, J.H., A new approach to nonlinear partial differential equations, Commun nonlin sci numer simul, 2, 230-235, (1997)
[15] He, J.H., Variational iteration method for delay differential equations, Commun nonlin sci numer simul, 2, 235-236, (1997)
[16] He, J.H., Variational iteration method – a kind of non-linear analytical technique: some examples, Int J non-linear mech, 34, 699-708, (1999) · Zbl 1342.34005
[17] He, J.H., Variational iteration method for autonomous ordinary differential systems, Appl math comput, 114, 2-3, 115-123, (2000) · Zbl 1027.34009
[18] He, J.H., A simple perturbation approach to Blasius equation, Appl math comput, 140, 2-3, 217-222, (2003) · Zbl 1028.65085
[19] He, J.H.; Wan, Y.Q.; Guo, Q., An iteration formulation for normalized diode characteristics, Int J circ theory appl, 32, 6, 629-632, (2004) · Zbl 1169.94352
[20] Abulwafa, E.M.; Abdou, M.A.; Mahmoud, A.A., The solution of nonlinear coagulation problem with mass loss, Chaos, solitons & fractals, 29, 2, 313-330, (2006) · Zbl 1101.82018
[21] Abdou, M.A.; Soliman, A.A., Variational iteration method for solving burger’s and coupled burger’s equations, J comput appl math, 181, 2, 245-251, (2005) · Zbl 1072.65127
[22] Momani, S.; Abuasad, S., Application of he’s variational iteration method to Helmholtz equation, Chaos, solitons & fractals, 27, 5, 1119-1123, (2006) · Zbl 1086.65113
[23] Soliman, A.A., A numerical simulation and explicit solutions of KdV-burgers’ and lax’s seventh-order KdV equations, Chaos, solitons & fractals, 29, 2, 294-302, (2006) · Zbl 1099.35521
[24] Moghimi M, Hejazi FSA. Variational iteration method for solving generalized Burger-Fisher and Burger equations. Chaos, Solitons & Fractals doi:10.1016/j.chaos.2006.03.031, in press. · Zbl 1138.35398
[25] Satsuma, J., Topics in soliton theory and exactly solvable nonlinear equations, (1987), World Scientific Singapore
[26] Wang, X.Y.; Zhu, Z.S.; Lu, Y.K., Solitary wave solutions of the generalised burgers – huxley equation, J phys A: math gen, 23, 271-274, (1990) · Zbl 0708.35079
[27] Inokuti, M.; Sekine, H.; Mura, T., General use of the Lagrange multiplier in nonlinear mathematical physics, (), 156-162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.