Biharmonic curves in 3-dimensional Sasakian space forms. (English) Zbl 1141.53060

A smooth map between two Riemannian manifolds is said to be a biharmonic map if its bitension field vanishes identically. Let \(M\) be a 3-dimensional Sasakian space form of constant holomorphic sectional curvature \(H\). Non-geodesic biharmonic curves of \(M\) are called proper biharmonic curves. In this paper the authors prove that every proper biharmonic curve of \(M\) is a helix \(\gamma\) (with constant geodesic curvature \(k\) and geodesic torsion \(\tau\)). In particular, if \(H\neq 1\), \(\gamma\) is a helix which makes a constant angle \(\alpha\) with the Reeb vector field such that \(k^2 + \tau^2 = 1 + (H-1)\sin^2\alpha\). Moreover, they give explicitly parametric equations of proper biharmonic helices in the so-called Bianchi-Cartan-Vranceanu model spaces of Sasakian spaces forms.
Reviewer: D. Perrone (Lecce)


53C43 Differential geometric aspects of harmonic maps
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C40 Global submanifolds
Full Text: DOI


[1] Baikoussis, C.; Blair, D. E., On Legendre curves in contact 3-manifolds, Geom. Dedicata, 49, 135-142 (1994) · Zbl 0799.53040
[2] Baird, P.; Kamissoko, D., On constructing biharmonic maps and metrics, Ann. Global Anal. Geom., 23, 65-75 (2003) · Zbl 1027.31004
[3] Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces. In: PDE’s, Submanifolds and Affine Differential Geometry (Warsaw, 2000), Banach Center Publ., vol. 57, pp. 67-87. Polish Acad. Sci., Warsaw (2002) · Zbl 1029.53071
[4] Bianchi, L.: Lezioni di Geometrie Differenziale. E. Spoerri Librao-Editore (1894)
[5] Blair, D.E.: Riemannian geometry of contact and symplectic manifolds, vol. 203. Prog. Math. Birkhäuser, Boston-Basel-Berlin (2002) · Zbl 1011.53001
[6] Blair, D. E.; Vanhecke, L., Symmetries and φ-symmetric spaces, Tôhoku Math. J., 39, 2, 373-383 (1997) · Zbl 0632.53039
[7] Caddeo, R.; Montaldo, S.; Oniciuc, C., Biharmonic submanifolds of S^3, Int. J. Math., 12, 867-876 (2001) · Zbl 1111.53302
[8] Caddeo, R.; Montaldo, S.; Oniciuc, C., Biharmonic submanifolds in spheres, Israel J. Math., 130, 109-123 (2002) · Zbl 1038.58011
[9] Montaldo, S., Oniciuc, C.: A short survey on biharmonic maps between Riemannian manifolds, arXiv:math.DG/0510636. · Zbl 1140.58004
[10] Caddeo, R.; Oniciuc, C.; Piu, P., Explicit formulas for biharmonic non-geodesic curves of the Heisenberg group, Rend, Sem. Mat. Univ. e Politec. Torino, 62, 3, 265-278 (2004) · Zbl 1183.58009
[11] Caddeo, R., Oniciuc, C., Piu, P.: Poster sesion, curvatures and Geometry, in honor of Lieven Vanhecke, Lecce 11-14/6/2003
[12] Cartan, E., Leçon sur la geometrie des espaces de Riemann, 2nd edn (1946), Paris: Gauthier-Villards, Paris · Zbl 0060.38101
[13] Chen, B. Y.; Ishikawa, S., Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45, 2, 323-347 (1991) · Zbl 0757.53009
[14] Dimitrić, I., Submanifolds of E^m with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sin., 20, 1, 53-65 (1992) · Zbl 0778.53046
[15] Eells, J.; Sampson, J. H., Harmonic mappings of Riemannian manifolds, Am. J. Math., 86, 109-160 (1964) · Zbl 0122.40102
[16] Eisenhart, L.P.: A Treatise on the Differential Geometry of Curves and Surfaces. Ginn and Company (1909) · JFM 40.0657.01
[17] Inoguchi, J., Biharmonic curves in Minkowski 3-space, Int. J. Math. Math. Sci., 21, 1365-1368 (2003) · Zbl 1076.53501
[18] Inoguchi, J., Submanifolds with harmonic mean curvature in contact 3-manifolds, Colloq. Math., 100, 163-179 (2004) · Zbl 1076.53065
[19] Inoguchi, J.; Kumamoto, T.; Ohsugi, N.; Suyama, Y., Differential geometry of curves and surfaces in 3-dimensional homogeneous spaces I-IV, Fukuoka Univ. Sci. Rep., 29, 155-182 (1999) · Zbl 0962.53032
[20] Kobayashi, S.: Transformation Groups in Differential Geometry, Ergebnisse der Mathematik und Ihere Grenzgebiete, vol. 70. Springer, Berlin Heidelberg New York (1972) · Zbl 0246.53031
[21] Lancret, M.A.: Mémoire sur les courbes à double courbure, Mémoires présentés à l’Institut 1, 416-454 (1806)
[22] Ogiue, K., On fiberings of almost contact manifolds, Kōdai Math. Sem. Rep., 17, 53-62 (1965) · Zbl 0136.18101
[23] O’Neill, B., The fundamental equations of a submersion, Mich. Math. J., 13, 459-469 (1966) · Zbl 0145.18602
[24] Perrone, D., Homogeneous contact Riemannian three-manifolds, Illinois J. Math., 13, 243-256 (1997) · Zbl 0906.53031
[25] Sasahara, T., Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors of the Laplace operator, Note Mat., 22, 1, 49-58 (20032004) · Zbl 1195.53086
[26] Sasahara, T.: Instability of biharmonic Legendre surfaces in Sasakian space forms (preprint, 2003)
[27] Sitzia, P.: Explicit formulas for geodesics of 3-dimensional homogeneous manifolds with isometry group of dimension 4 or 6, preprint, Univ. Degli Studi di Cagriali (unpublished, 1989)
[28] Struik, D.J.: Lectures on Classical Differential Geometry, Addison-Wesley Press Inc., Cambridge, 1950, reprint of the second edition, Dover, New York (1988) · Zbl 0041.48603
[29] Tamura, M., Gauss maps of surfaces in contact space forms, Commun. Math. Univ. Sancti Pauli, 52, 117-123 (2003) · Zbl 1063.53065
[30] Urakawa, H.: Calculus of variations and harmonic maps, Translations of Mathematical Monographs, vol. 132. Am. Math. Soc., Providence, RI (1993) · Zbl 0799.58001
[31] Vranceanu, G.: Leçons de Géométrie Différentielle I, Ed. Acad. Rep. Pop. Roum., Bucarest (1947) · Zbl 0034.24901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.