Exact solutions of some nonlinear partial differential equations using the variational iteration method linked with Laplace transforms and the Padé technique. (English) Zbl 1141.65382

Summary: The variational iteration method (VIM) is reintroduced with Laplace transforms and the Padé technique treatment to obtain closed form solutions of nonlinear equations. Some examples, including the coupled Burger’s equation, compacton \(k(n,n)\) equation, Zakharov-Kuznetsov Zk\((n,n)\) equation, and Korteweg de Vries (KdV) and modified KdV equations are given to show the effectiveness of the coupled VIM-Laplace-Padé and VIM-Padé techniques.


65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
35A22 Transform methods (e.g., integral transforms) applied to PDEs
44A10 Laplace transform
41A21 Padé approximation
Full Text: DOI


[1] Ablowitz, M.J.; Clarkson, P.A., Solitons: nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press Cambridge · Zbl 0762.35001
[2] Miura, M.R., Backlund transformation, (1978), Springer-Verlag Berlin
[3] Hirota, R., Direct methods in soliton theory, () · Zbl 0124.21603
[4] Gu, C.H.; Hu, H.S.; Zhou, Z.X., Darboux transformation in solitons theory and geometry applications, (1999), Shangai Science Technology Press Shanghai
[5] Olver, P.J., Application of Lie group to differential equation, (1986), Springer New York · Zbl 0656.58039
[6] Ablowitz, M.J.; Segur, H., Solitons and the inverse scattering transform, (1981), SIAM PA, Philadelphia · Zbl 0299.35076
[7] Malfliet, W., The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations, Journal of computational and applied mathematics, 164-165, (2004), 529-541 · Zbl 1038.65102
[8] Malfliet, W., Solitary wave solutions of nonlinear wave equations, American journal of physics, 60, 7, 650-654, (1992) · Zbl 1219.35246
[9] Wazwaz, A.M., The tanh method for traveling wave solutions of nonlinear equationds, Applied mathematics and computation, 154, 3, 713-723, (2004) · Zbl 1054.65106
[10] Chenglin, B., New explicit and exact travelling wave solutions for a system of dispersive long wave equations, Reports on mathematical physics, 53, 2, 291-299, (2004) · Zbl 1069.35068
[11] Wazwaz, A.M., A sine cosine method for handling nonlinear wave equations, Mathematical and computer modelling, 40, 5-6, 499-508, (2004) · Zbl 1112.35352
[12] Adomian, G., Solving frontier problem of physics: the decomposition method, (1994), Kluwer Academic Publishers MA, Boston · Zbl 0802.65122
[13] He, J.H., Some asymptotic methods for strongly nonlinear equations, International journal of modern physics B, 20, 10, 1141-1199, (2006) · Zbl 1102.34039
[14] He, J.H., A new approach to nonlinear partial differential equations, Communications in nonlinear science and numerical simulation, 2, 4, 230-235, (1997)
[15] He, J.H., Variational iteration method — A kind of non-linear analytical technique: some examples, International journal of non-linear mechanics, 34, 4, 699-708, (1999) · Zbl 1342.34005
[16] He, J.H., Variational iteration method for autonomous ordinary differential systems, Applied mathematics and computation, 114, 2-3, 115-123, (2000) · Zbl 1027.34009
[17] Marinca, V., An approximate solution for one-dimensional weakly nonlinear oscillations, International journal of nonlinear sciences and numerical simulation, 3, 107-120, (2002) · Zbl 1079.34028
[18] He, J.H.; Wu, X.H., Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, solitons and fractals, 29, 1, 108-113, (2006) · Zbl 1147.35338
[19] T. Abassy, M.A. El-Tawil, H. El-Zoheiry, Toward a modified variational iteration method (MVIM), Journal of Computational and Applied Mathematics (in press), doi: 10.1016/j.cam.2006.07.019 · Zbl 1119.65096
[20] Abassy, T.A.; El-Tawil, M.; Kamel, H., The solution of KdV and mkdv equations using Adomian Padé approximation, International journal of nonlinear sciences and numerical simulation, 5, 4, 327-339, (2004) · Zbl 1401.65122
[21] Abassy, T.A.; El-Tawil, M.; Kamel, H., The solution of burgers’ and good Boussinesq equations using ADM-padé technique, Chaos, solitons and fractals, 32, 1008-1026, (2007) · Zbl 1130.35111
[22] T. Abassy, Magdy A. El-Tawil, Hanafy El-Zoheiry, Solving nonlinear P.D.E. using the modified variational iteration-Padé technique (MVIM-Padé), Journal of Computational and Applied Mathematics (in press), doi: 10.1016/j.cam.2006.07.024
[23] Baker, G.A., Essentials of padè approxmants, (1975), Academic Press
[24] Jiao, Y.C.; Yamamoto, Y.; Dang, C.; Hao, Y., An after treatment technique for improving the accuracy of adomian’s decomposition method, Computers and mathematics with applications, 43, 783-798, (2002) · Zbl 1005.34006
[25] Rosenau, P.; Hyman, J.M., Compactons: solitons with finite wavelength, Physical review letters, 70, 564-567, (1993) · Zbl 0952.35502
[26] Abdou, M.A.; Soliman, A.A., Variational iteration method for solving burger’s and coupled burger’s equations, Journal of computational and applied mathematics, 181, 2, 245-251, (2005) · Zbl 1072.65127
[27] Wazwaz, A.-M., Nonlinear dispersive special type of the zakharov – kuznetsov equation ZK \((n, n)\) with compact and noncompact structures, Applied mathematics and computation, 161, 577-590, (2005) · Zbl 1061.65105
[28] P.G. Drazin, R.S. Jonson, Soliton: An Introduction, Combridge, New York, 1993
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.