×

An approximate solution for flow between two disks rotating about distinct axes at different speeds. (English) Zbl 1141.76066

Summary: We study the flow of a linearly viscous fluid between two disks rotating about two distinct vertical axes. An approximate analytical solution is obtained for the rotations with a small angular velocity difference. It is shown how the velocity components depend on the position, the Reynolds number, the eccentricity, the ratio of angular speeds of the disks, and the parameters satisfying the conditions \(u=0\) and \(\nu =0\) in midplane.

MSC:

76U05 General theory of rotating fluids
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] T. von Kármán, “Laminar und turbulente Reibung,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 1, pp. 233-252, 1921. · JFM 48.0968.01
[2] G. K. Batchelor, “Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 4, no. 1, pp. 29-41, 1951. · Zbl 0042.43101
[3] R. Berker, “A new solution of the Navier-Stokes equation for the motion of a fluid contained between two parallel plates rotating about the same axis,” Archiwum Mechaniki Stosowanej, vol. 31, no. 2, pp. 265-280, 1979. · Zbl 0415.76026
[4] K. R. Rajagopal, “A class of exact solutions to the Navier-Stokes equations,” International Journal of Engineering Science, vol. 22, no. 4, pp. 451-455, 1984. · Zbl 0531.76033
[5] S. V. Parter and K. R. Rajagopal, “Swirling flow between rotating plates,” Archive for Rational Mechanics and Analysis, vol. 86, no. 4, pp. 305-315, 1984. · Zbl 0594.76022
[6] C.-Y. Lai, K. R. Rajagopal, and A. Z. Szeri, “Asymmetric flow between parallel rotating disks,” Journal of Fluid Mechanics, vol. 146, pp. 203-225, 1984. · Zbl 0565.76037
[7] C.-Y. Lai, K. R. Rajagopal, and A. Z. Szeri, “Asymmetric flow above a rotating disk,” Journal of Fluid Mechanics, vol. 157, pp. 471-492, 1985. · Zbl 0574.76032
[8] A. Z. Szeri, C.-Y. Lai, and A. A. Kayhan, “Rotating disk with uniform suction in streaming flow,” International Journal for Numerical Methods in Fluids, vol. 6, no. 4, pp. 175-196, 1986. · Zbl 0591.76178
[9] B. Maxwell and R. P. Chartoff, “Studies of a polymer melt in an orthogonal rheometer,” Journal of Rheology, vol. 9, no. 1, pp. 41-52, 1965.
[10] T. N. G. Abbott and K. Walters, “Rheometrical flow systems-part 2: theory for the orthogonal rheometer, including an exact solution of the Navier-Stokes equations,” Journal of Fluid Mechanics, vol. 40, pp. 205-213, 1970. · Zbl 0184.52102
[11] K. R. Rajagopal and A. S. Gupta, “Flow and stability of second grade fluids between two parallel rotating plates,” Archiwum Mechaniki Stosowanej, vol. 33, no. 5, pp. 663-674, 1981. · Zbl 0501.76006
[12] K. R. Rajagopal, “On the flow of a simple fluid in an orthogonal rheometer,” Archive for Rational Mechanics and Analysis, vol. 79, no. 1, pp. 39-47, 1982. · Zbl 0513.76002
[13] K. R. Rajagopal and A. S. Wineman, “A class of exact solutions for the flow of a viscoelastic fluid,” Archiwum Mechaniki Stosowanej, vol. 35, no. 5-6, pp. 747-752, 1983. · Zbl 0563.76012
[14] R. R. Huilgol and K. R. Rajagopal, “Non-axisymmetric flow of a viscoelastic fluid between rotating disks,” Journal of Non-Newtonian Fluid Mechanics, vol. 23, pp. 423-434, 1987. · Zbl 0616.76012
[15] K. R. Rajagopal, “Swirling flows of viscoelastic fluids,” Computers & Structures, vol. 30, no. 1-2, pp. 143-149, 1988. · Zbl 0667.76015
[16] K. R. Rajagopal, “Flow of viscoelastic fluids between rotating disks,” Theoretical and Computational Fluid Dynamics, vol. 3, no. 4, pp. 185-206, 1992. · Zbl 0747.76018
[17] C. Truesdell and K. R. Rajagopal, An Introduction to the Mechanics of Fluids, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, Mass, USA, 2000. · Zbl 0942.76001
[18] D. G. Knight, “Flow between eccentric disks rotating at different speeds: inertia effects,” Zeitschrift für Angewandte Mathematik und Physik, vol. 31, pp. 309-317, 1980. · Zbl 0425.76026
[19] B. Banerjee and A. K. Borkakati, “Heat transfer in a hydrodynamic flow between eccentric disks rotating at different speeds,” Zeitschrift für Angewandte Mathematik und Physik, vol. 33, pp. 414-418, 1982. · Zbl 0497.76076
[20] A. R. Rao and P. R. Rao, “On the magnetohydrodynamic flow between eccentrically rotating disks,” International Journal of Engineering Science, vol. 21, no. 4, pp. 359-372, 1983. · Zbl 0511.76109
[21] P. R. Rao and A. R. Rao, “Heat transfer in a MHD flow between eccentric disks rotating at different speeds,” Zeitschrift für Angewandte Mathematik und Physik, vol. 34, pp. 550-555, 1983. · Zbl 0524.76100
[22] P. R. Rao and A. R. Rao, “Flow between torsionally oscillating disks rotating about different axes at different speeds,” Zeitschrift für Angewandte Mathematik und Physik, vol. 33, pp. 358-369, 1982. · Zbl 0523.76035
[23] P. R. Rao, “Magnetohydrodynamic flow between torsionally oscillating eccentric disks,” International Journal of Engineering Science, vol. 22, no. 4, pp. 393-402, 1984. · Zbl 0533.76124
[24] R. Berker, “An exact solution of the Navier-Stokes equation. The vortex with curvilinear axis,” International Journal of Engineering Science, vol. 20, no. 2, pp. 217-230, 1982. · Zbl 0487.76039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.