×

zbMATH — the first resource for mathematics

Adaptive synchronization of a unified chaotic system. (English) Zbl 1141.93361
Summary: An adaptive controller is designed to synchronize two uncertain unified chaotic systems. The Lyapunov stability theory is used to substantiate the results. Numerical simulations are presented to show the feasibility and effectiveness of our approach.

MSC:
93C40 Adaptive control/observation systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93C41 Control/observation systems with incomplete information
93C05 Linear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys rev lett, 64, 821-824, (1990) · Zbl 0938.37019
[2] Wang, C.; Ge, S.S., Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos solitons & fractals, 12, 1199-1206, (2001) · Zbl 1015.37052
[3] Yu, Y.; Zhang, S., Controlling uncertain Lü system using backstepping design, Chaos, solitons & fractals, 15, 897-902, (2003) · Zbl 1033.37050
[4] Yang, T.; Yang, L.B.; Yang, C.M., Impulsive control of Lorenz system, Physica D, 110, 18-24, (1997) · Zbl 0925.93414
[5] Yu, X.; Song, Y., Chaos synchronization via controlling partial state of chaotic systems, Int J bifurcat chaos, 11, 1737-1741, (2001)
[6] Chen, S.H.; Lü, J.H., Synchronization of an uncertain unified chaotic system via adaptive control, Chaos solitons & fractals, 14, 4, 643-647, (2002) · Zbl 1005.93020
[7] Yassen, M., Chaos synchronization between different chaotic system using linear feedback control, Chaos solitons & fractals, 26, 913-920, (2005) · Zbl 1093.93539
[8] Park, J.H., Chaos synchronization of a chaotic system via nonlinear control, Chaos solitons & fractals, 25, 579-584, (2004) · Zbl 1092.37514
[9] Park, J.H., Controlling chaotic systems via nonlinear feedback control, Chaos, solitons & fractals, 23, 1049-1054, (2005) · Zbl 1061.93508
[10] Agiza, H.N.; Yassen, M.T., Synchronization of Rössler and Chen chaotic dynamical systems using active control, Phys lett A, 278, 191-197, (2001) · Zbl 0972.37019
[11] Yassen, M., Controlling chaos and synchronization for new chaotic systems using active control, Chaos solitons & fractals, 23, 131-140, (2005) · Zbl 1091.93520
[12] Li, Z.; Han, C.Z.; Shi, S.J., Modification for synchronization of Rössler and Chen chaotic systems, Phys lett A, 301, 224-230, (2002) · Zbl 0997.37014
[13] Yu, Y.; Zhang, S., The synchronization of linearly bidirectional coupled chaotic systems, Chaos solitons & fractals, 22, 189-197, (2004) · Zbl 1060.93538
[14] Yu, Y.; Zhang, S., Global synchronization of three coupled chaotic systems with ring connection, Chaos solitons & fractals, 24, 5, 1233-1242, (2005) · Zbl 1081.37020
[15] Lü, J.; Chen, G.; Cheng, D.Z.; Celikovsky, S., Bridge the gap between the Lorenz system and Chen system, Int J bifurcat chaos, 12, 12, 2917-2926, (2002) · Zbl 1043.37026
[16] Park, J.H., Stability criterion for synchronization of linearly coupled unified chaotic system, Chaos, solitons & fractals, 23, 1319-1325, (2005) · Zbl 1080.37035
[17] Lorenz, E.N., Deterministic non-periodic flows, J atmos sci, 20, 130-141, (1963) · Zbl 1417.37129
[18] Chen, G.; Ueta, T., Yet another chaotic attractor, Int J bifurcat chaos, 9, 1465-1466, (1999) · Zbl 0962.37013
[19] Lü, J.; Chen, G., A new chaotic attractor coined, Int J bifurcat chaos, 12, 3, 659-661, (2002) · Zbl 1063.34510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.