×

Two types of new integrable decompositions of the Kaup-Newell equation. (English) Zbl 1142.37359

Summary: Two types of new integrable decompositions of the Kaup-Newell equation are presented. The first one comes from the nonstandard binary nonlinearization of the well-known \(2 \times 2\) Kaup-Newell spectral problems and the other comes from the standard binary nonlinearization of new \(3 \times 3\) Kaup-Newell spectral problems. The relationship between them is revealed.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Cao, C.W., Chin quart J math, 3, 90, (1998)
[2] Cao, C.W., Sci China A, 33, 528, (1990)
[3] Cao CW, Geng XG. Classical integrable systems generated through nonlinearization of eigenvalue problems. In: Proc Conf on Nonlinear Physics (Shanghai 1989), Research Reports in Physics. Berlin: Springer; 1990. p. 66-78.
[4] Ma, W.X., Physica A, 219, 467, (1995)
[5] Ma, W.X.; Strampp, W., Phys lett A, 185, 277, (1994)
[6] Zeng, Y.B., Chin sci bull, 37, 768, (1992)
[7] Zeng, Y.B., Physica D, 73, 171, (1994)
[8] Ma, W.X.; Zhou, R.G., Chin ann math B, 23, 373, (2002)
[9] Ma, W.X.; Zhou, R.G., J nonlinear math phys, 9, 106, (2002)
[10] Zhou, R.G., J math phys, 38, 2335, (1997)
[11] Geng, X.G.; Wu, Y.T., J math phys, 38, 3069, (1997)
[12] Geng, X.G.; Wu, Y.T., J math phys, 40, 2971, (1999)
[13] Zeng, Y.B.; Dai, H.H., J phys A, 34, L657, (2001)
[14] Ma, W.X.; Li, Y.S., Phys lett A, 268, 352, (2000)
[15] Błaszak, M.; Ma, W.X., J math phys, 34, 3107, (2002)
[16] Kaup, D.J.; Newell, A.C., J math phys, 19, 798, (1978)
[17] Ma, W.X.; Ding, Q.; Zhang, W.G.; Lu, B.Q., IL nuovo cimento B, 111, 1135, (1996)
[18] Tu, G.Z., J math phys, 30, 330, (1989)
[19] Ma, W.X.; Fuchssteiner, B.; Oevel, W.A., Physica A, 233, 331, (1996)
[20] Faddeev, L.D.; Takhtajian, L.A., Hamiltonian methods in the theory of solitons, (1987), Springer-Verlag Berlin · Zbl 0632.58004
[21] Babelon, O.; Villet, C.M., Phys lett B, 237, 411, (1990)
[22] Cao, C.W., Classical integrable system, ()
[23] Sundermeyer, K., Constrainted dynamics with applications to yang – mills theory, General relativity, classical spin. dual string model, Lectures notes in physics, (1982), Springer-Verlag Berlin, p. 169
[24] Ma, W.X.; Zhou, Z.X., J math phys, 42, 4345, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.