New rational formal solutions for \((1 + 1)\)-dimensional Toda equation and another Toda equation. (English) Zbl 1142.37370

Summary: We present a new rational expansion method to uniformly construct a series of exact solutions for nonlinear differential-difference equations. Compared with most existing methods, the proposed method not only recovers some well-known solutions, but also finds some new and general solutions. The efficiency of the method can be demonstrated on \((1 + 1)\)-dimensional Toda equation and another Toda equation.


37K60 Lattice dynamics; integrable lattice equations
Full Text: DOI


[1] Fermi, E.; Pasta, J.; Ulam, S., Collected papers of enrico Fermi II, (1965), University of Chicago Press Chicago, IL
[2] Hereman W, Sanders JA, Sayers J, Wang JP. In: Levi D, Winternitz P, editors. Symbolic computation of conserved densities, generalized symmetries, and recursion operators for nonlinear differential-difference equations. CRM proc lect notes, vol. 39, Providence, RI: Amer. Math. Soc., in press. · Zbl 1080.65119
[3] Levi, D.; Ragnisco, O.; Levi, D.; Yamilov, R.I., Lett nuovo cimento, J math phys, 38, 6648, (1997)
[4] Yamilov, R.I., Classification of Toda type scalar lattices, () · Zbl 1121.37056
[5] Yamilov, R.I., J phys A: math gen, 27, 6839, (1994)
[6] Adler, V.E.; Svinolupov, S.I.; Yamilov, R.I.; Adler, V.E.; Shabat, A.B.; Yamilov, R.I., Phys lett A, Theor math phys, 125, 1603, (2000)
[7] Cherdantsev, I.Yu.; Yamilov, R.I., Phys D, 87, 140, (1995)
[8] Cherdantsev, I.Yu; Yamilov, R.I., Local master symmetries of differential-difference equations, () · Zbl 1194.35485
[9] Shabat, A.B.; Yamilov, R.I.; Shabat, A.B.; Yamilov, R.I., Leningrad math J, Phys lett A, 227, 15, (1997)
[10] Svinolupov, S.I.; Yamilov, R.I., Phys lett A, 160, 548, (1991)
[11] Mikhailov, A.V.; Shabat, A.B.; Yamilov, R.I.; Mikhailov, A.V.; Shabat, A.B.; Yamilov, R.I.; Mikhailov, A.V.; Shabat, A.B.; Sokolov, V.V., The symmetry approach to classification of integrable equations, (), 42, 1, (1987) · Zbl 0646.35010
[12] Sokolov, V.V.; Shabat, A.B., Sov sci rev C; math phys rev, 4, 221, (1984)
[13] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press New York · Zbl 0762.35001
[14] Wadati, M.; Wadati, M.; Wadati, M.; Sanuki, H.; Konno, K.; Konno, K.; Wadati, M., J phys soc jpn, J phys soc jpn, Prog theor phys, Prog theor phys, 53, 1652, (1975)
[15] Fan, E.G.; Fan, E.G.; Hon, Y.C., Phys lett A, Z naturforsch A, 57, 692, (2002)
[16] Yan, Z.Y.; Yan, Z.Y., Chaos, solitons & fractals, Chaos, solitons & fractals, 15, 575, (2003)
[17] Chen, Y.; Wang, Q.; Li, B.; Chen, Y.; Chen, Y.; Wang, Q.; Chen, Y.; Li, B.; Chen, Y.; Wang, Q.; Li, B., Chaos, solitons & fractals, Czechoslovak J phys, Chin phys, Chin phys, Z naturforsch, 59a, 529, (2004)
[18] Wadati, M.; Toda, M., J phy soc jpn, 39, 1196, (1975)
[19] Deng, S.F.; Chen, D.Y., Chaos, solitons & fractals, 23, 1169, (2005)
[20] Choudhury, Anindya Ghose; Chowdhury, A. Roy, Phys. lett. A, 280, 37, (2001)
[21] Hirota, R.; Hu, X.B.; Tang, X.Y., J math anal appl, 288, 326, (2003)
[22] Hu, X.B.; Wu, Y.T.; Hu, X.B.; Tam, Hon-Wah, Phys lett A, Phys lett A, 276, 65, (2000)
[23] Man¨as; Manuel; Doliwa; Adam; Santini; Paolo, Maria; Nimmo, J.J., Phys lett A, Chaos, solitons & fractals, 11, 115, (2000)
[24] Wang, Q.; Chen, Y.; Zhang, H.Q., Chaos, solitons & fractals, 23, 477, (2005)
[25] Toda, M.; Toda, M.; Toda, M., Theory of nonlinear lattices, J phys soc jpn, Supp prog theor phys, 59, 1, (1976), Springer-Verlag Berlin
[26] Wadati, M., Prog theor phys, 59, Suppl, 36, (1976)
[27] Suris, Yu.B., J phys A math gen, 30, 1745, (1997)
[28] Baldwin, D.; Göktas, Ü.; Hereman, W., Comput phys commun, 162, 203, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.