×

Comprehensive vs. comprehensible classifiers in logical analysis of data. (English) Zbl 1142.62365

Summary: The main objective of this paper is to compare the classification accuracy provided by large, comprehensive collections of patterns (rules) derived from archives of past observations, with that provided by small, comprehensible collections of patterns. This comparison is carried out here on the basis of an empirical study, using several publicly available data sets. The results of this study show that the use of comprehensive collections allows a slight increase of classification accuracy, and that the “cost of comprehensibility” is small.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62-07 Data analysis (statistics) (MSC2010)
68T05 Learning and adaptive systems in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] G. Alexe, S. Alexe, S. Foldes, P.L. Hammer, B. Simeone, Consensus algorithms for the generation of all maximal bicliques, Discrete Appl. Math., 10.1016/j.dam.2003.09.004. · Zbl 1056.05132
[2] G. Alexe, P.L. Hammer, Spanned patterns for the logical analysis of data, Discrete Appl. Math. 154 (2006) 1039-1949. · Zbl 1090.68094
[3] Alexe, S.; Blackstone, E.; Hammer, P.L.; Ishwaran, H.; Lauer, M.S.; Pothier Snader, C.E., Coronary risk prediction by logical analysis of data, Ann. oper. res., 119, 15-42, (2003) · Zbl 1026.62119
[4] S. Alexe, P.L. Hammer, Accelerated algorithm for pattern detection in logical analysis of data, Discrete Appl. Math. 154 (2006) 1050-1063. · Zbl 1090.68095
[5] S. Alexe, P.L. Hammer, Pattern-based discriminants in the logical analysis of data, in: P. Pardalos (Ed.), Data Mining in Biomedicine, Biocomputing, vol. 3, Springer, Berlin, 2005, in press.
[6] A. Blake. Canonical expressions in Boolean algebra, Ph.D. Thesis, University of Chicago, 1937. · Zbl 0018.38601
[7] Boros, E.; Hammer, P.L.; Ibaraki, T.; Kogan, A., Logical analysis of numerical data, Math. programming, 79, 163-190, (1997) · Zbl 0887.90179
[8] Boros, E.; Hammer, P.L.; Ibaraki, T.; Kogan, A.; Mayoraz, E.; Muchnik, I., An implementation of logical analysis of data, IEEE trans. knowledge and data eng., 12, 2, 292-306, (2000)
[9] Crama, Y.; Hammer, P.L.; Ibaraki, T., Cause – effect relationships and partially defined Boolean functions, Ann. oper. res., 16, 299-326, (1988) · Zbl 0709.03533
[10] P.L. Hammer, Partially defined Boolean functions and cause – effect relationships, in: International Conference on Multi-Attribute Decision Making via OR-Based Expert Systems, University of Passau, Passau, Germany, 1986.
[11] Hammer, P.L.; Kogan, A.; Simeone, B.; Szedmak, S., Pareto-optimal patterns in logical analysis of data, Discrete appl. math., 144, 79-102, (2004) · Zbl 1078.62504
[12] Kuznetsov, S.O.; Obiedkov, S.A., Comparing performance of algorithms for generating concept lattices, J. experimental and theoret. artificial intelligence, 14, 189-216, (2002) · Zbl 1024.68020
[13] Lauer, M.S.; Alexe, S.; Pothier Snader, C.E.; Blackstone, E.H.; Ishwaran, H.; Hammer, P.L., Use of the “logical analysis of data” method for assessing long-term mortality risk after exercise electrocardiography, Circulation, 106, 685-690, (2002)
[14] Y. Malgrange, Recherche des sous-matrices premières d’une matrice à coefficients binaires. Applications à certains problèmes de graphe, in: Deuxième Congrès de l’AFCALTI, October 1961, Gauthier-Villars, Paris, 1962, pp. 231-242.
[15] Quine, W., A way to simplify truth functions, Amer. math. monthly, 62, 627-631, (1955) · Zbl 0068.24209
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.