×

Algorithms for strong coupling procedures. (English) Zbl 1142.74050

Summary: This paper considers algorithms for computing the response of a coupled problem with a partitioned approach. One important example treated here is fluid-structure interaction (FSI). Often procedures or even software exists to solve each sub-problem separately, and one wants to couple both. This setting seems to allow only the so-called weak coupling which is not sufficient for some problems. The so-called strong coupling is often a totally implicit formulation, where the system components are evaluated at the same time level. This usually requires an iterative procedure. The FSI problem is cast as an abstract differential algebraic equation, for which the coupling procedures are developed. With the partitioned approach, one simple and frequently used computational procedure is similar to a block-Gauss-Seidel iteration. It is shown why this approach may experience difficulties, and how they may be circumvented with Newton-like methods still staying in the partitioned framework. The functional and software engineering requirements for the simulation interface are described and analysed. Some simple coupled example problems demonstrate how the proposed procedures work.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

FEATFLOW; FEAP
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Morand, H.; Ohayon, R., Fluid-structure interaction, (1995), John Wiley & Sons Chichester
[2] Belytschko, T.; Mullen, R., Two-dimensional fluid-structure impact computations with regularization, Comput. methods appl. mech. engrg., 27, 139-154, (1981) · Zbl 0472.73046
[3] Kennedy, J.M.; Belytschko, T., A survey of computational methods for fluid-structure analysis of reactor safety, Nucl. engrg. des., 69, 379-398, (1982)
[4] Donea, J.; Giuliani, S.; Halleux, J.P., An arbitrary Lagrangian-Eulerian finite element method for transient fluid-structure interaction, Comput. methods appl. mech. engrg., 33, 689-723, (1982) · Zbl 0508.73063
[5] Bathe, K.-J.; Zhang, H.; Wang, M.H., Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions, Comput. struct., 56, 193-213, (1995) · Zbl 0923.76103
[6] Piperno, S.; Farhat, C.; Larrouturou, B., Partitioned procedures for the transient solution of coupled aeroelastic problems, Comput. methods appl. mech. engrg., 124, 79-112, (1995) · Zbl 1067.74521
[7] Mouro, J.; Le Tallec, P., Fluid structure interaction with large structural displacements, Comput. methods appl. mech. engrg., 190, 3039-3067, (2001) · Zbl 1001.74040
[8] Farhat, C., Parallel and distributed solution of coupled nonlinear dynamic aeroelastic response, ()
[9] Rifai, S.; Johan, Z.; Wang, W.-P.; Grisval, J.-P.; Hughes, T.J.R.; Ferencz, M., Multiphysics simulation of flow induced vibrations and aeroelasticity on parallel computing platforms, Comput. methods appl. mech. engrg., 174, 393-417, (1999) · Zbl 0962.74068
[10] Bathe, K.-J.; Zhang, H.; Ji, S.H., Finite element analysis of fluid flows fully coupled with structural interactions, Comput. struct., 72, 1-16, (1999) · Zbl 1072.74545
[11] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, vol. 1-3, (2001), Butterworth Heinemann London · Zbl 0991.74002
[12] Argyris, J.; Doltsinis, I.S.; Pimenta, P.; Wüstenberg, H., Thermomechanical response of solids at high strains—natural approach, Comput. methods appl. mech. engrg., 32, 3-57, (1982) · Zbl 0505.73062
[13] Zienkiewicz, O.C.; Paul, D.K.; Chan, A.H.C., Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems, Int. J. numer. methods engrg., 26, 1039-1055, (1988) · Zbl 0634.73110
[14] Park, K.C.; Felippa, C.A., Partitioned analysis of coupled systems, () · Zbl 0546.73063
[15] Park, K.C.; Felippa, C.A., Recent developments in coupled field analysis methods, () · Zbl 0548.73068
[16] Zienkiewicz, O.C., Coupled problems and their numerical solution, () · Zbl 0548.73048
[17] Zienkiewicz, O.C.; Chan, A.H.C., Coupled problems and their numerical solution, () · Zbl 0702.73059
[18] Blom, F.J., A monolithical fluid-structure interaction algorithm applied to the piston problem, Comput. methods appl. mech. engrg., 167, 369-391, (1998) · Zbl 0948.76046
[19] Rugonyi, S.; Bathe, K.-J., On the analysis of fully-coupled fluid flows with structural interactions—a coupling and condensation procedure, Int. J. comput. civil struct. engrg., 1, 29-41, (2000)
[20] Felippa, C.A.; Park, K.C., Staggered transient analysis procedures for coupled mechanical systems: formulation, Comput. methods appl. mech. engrg., 24, 61-111, (1980) · Zbl 0453.73091
[21] Park, K.C., Partitioned transient analysis procedures for coupled-field problems: stability analysis, J. appl. mech., 47, 370-376, (1980) · Zbl 0437.73072
[22] Piperno, S., Explicit/implicit fluid-structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations, Int. J. numer. methods fluids, 25, 1207-1226, (1997) · Zbl 0910.76065
[23] Mok, D.P.; Wall, W.A., Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, ()
[24] Steindorf, J.; Matthies, H.G., Efficient partitioned methods for the computation of fluid-structure interaction on parallel computers, () · Zbl 0951.74629
[25] J. Steindorf, Partitionierte Verfahren für Probleme der Fluid-Struktur Wechselwirkung, Doctoral thesis, Technische Universität Braunschweig, Brunswick, 2002.
[26] Matthies, H.G.; Steindorf, J., Strong coupling methods, () · Zbl 1312.74009
[27] H.G. Matthies, J. Steindorf, Partitioned strong coupling algorithms for fluid-structure interaction, Informatik-Bericht 2002-4, Technische Universität Braunschweig, Brunswick, 2002. · Zbl 1312.74009
[28] Piperno, S.; Farhat, C., Design of efficient partitioned procedures for the transient solution of aeroelastic problems, Rev. eur. élements finis, 9, 6-7, 655-680, (2000) · Zbl 1003.74081
[29] Lefrantois, E.; Dhatt, G.; Vandromme, D., Numerical study of the aeroelastic stability of an overexpanded rocket-nozzle, Rev. eur. élements finis, 9, 6-7, 727-762, (2000) · Zbl 0997.74031
[30] Leyland, P.; Carstens, V.; Blom, F.; Tefy, T., Fully coupled fluid-structure algorithms for aeroelasticity and forced vibration induced flutter: applications to compressor cascade, Rev. eur élements finis, 9, 6-7, 763-803, (2000) · Zbl 1003.74077
[31] Codina, R.; Cervera, M., Block-iterative algorithms for nonlinear coupled problems, () · Zbl 1071.76536
[32] Arnold, M.; Günther, M., Preconditioned dynamic iteration for coupled differential-algebraic systems, BIT numer. math., 41, 1-25, (2001) · Zbl 0986.65076
[33] Matthies, H.G.; Steindorf, J., Efficient iteration schemes for non-linear fluid-structure interaction problems, () · Zbl 0951.74629
[34] Matthies, H.G.; Steindorf, J., How to make weak couplings strong, () · Zbl 1312.74009
[35] Matthies, H.G.; Steindorf, J., Fully coupled fluid-structure interaction using weak coupling, Proc. appl. math. mech., 1, 1, 37-38, (2002) · Zbl 1312.74009
[36] Matthies, H.G.; Steindorf, J., Partitioned strong coupling algorithms for fluid-structure interaction, Comput. struct., 81, 1277-1286, (2003)
[37] Artlich, S.; Mackens, W., Newton-coupling of fixed point iterations, () · Zbl 0868.65030
[38] W. Mackens, J. Menck, H. Voss, Numerical system synthesis: concepts for coupling subsystem solvers, Technical Report, Technische Universität Hamburg-Harburg, 1998.
[39] Mackens, W.; Menck, J.; Voss, H., Numerical coupling of subsystems, Zeitschr. angew. math. mech., 79, 3, S871-S872, (1999) · Zbl 0944.65515
[40] Arnold, M., Constraint partitioning in dynamic iteration methods, Zeitschr. angew. math. mech., 81, (2001) · Zbl 0986.65077
[41] Smith, B.; Bjorstad, P.; Gropp, W., Domain decomposition, (1996), Cambridge University Press Cambridge
[42] Burrage, K., Parallel and sequential methods for ordinary differential equations, (1995), Clarendon Press Oxford · Zbl 0838.65073
[43] Chan, T.F., An approximate Newton method for coupled nonlinear systems, SIAM J. numer. anal., 22, 5, 904-913, (1985) · Zbl 0578.65041
[44] Miekkala, U.; Nevanlinna, O., An approximate Newton method for coupled nonlinear systems, SIAM J. sci. stat. comput., 8, 459-482, (1987) · Zbl 0625.65063
[45] Farhat, C.; Lesoinne, M., Two efficient staggered algorithms for the serial and parallel solution of three-dimensional transient aeroelastic problems, Comput. methods appl. mech. engrg., 182, 499-515, (2000) · Zbl 0991.74069
[46] Farhat, C.; Park, K.C.; Dubois-Pelerin, Y., An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems, Comput. methods appl. mech. engrg., 85, 349-365, (1991) · Zbl 0764.73081
[47] Donea, J., Arbitrary Lagrangian-Eulerian finite element methods, () · Zbl 0536.73062
[48] Wall, W.A.; Ramm, E., Fluid-structure interaction based upon a stabilized (ALE) finite element method, () · Zbl 0951.76539
[49] Bathe, K.-J., Finite element procedures, (1996), Prentice-Hall Englewood Cliffs, NJ
[50] Ferziger, J.H.; Perić, M., Computational methods for fluid dynamics, (1996), Springer-Verlag Berlin · Zbl 0869.76003
[51] Thomas, P.D.; Lombard, C.K., Geometric conservation law and its application to flow computations on moving grids, Aiaa j., 17, 10, 1030-1037, (1979) · Zbl 0436.76025
[52] Dubini, G.; Pietrabissi, R.; Montevecchi, F.M., Fluid-structure interaction in bio-fluid mechanics, Med. engrg. phys., 17, 2, 609-617, (1995)
[53] C. Grandmont, V. Guimet, Y. Maday, Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid-structure interaction, in: Proceedings of the Second European Conference on Numerical Mathematics, Heidelberg, 1997. · Zbl 1215.65158
[54] Batina, J.T., Unsteady Euler airfoil solutions using unstructured dynamic meshes, Aiaa j., 28, 8, 1381-1388, (1990)
[55] Cebral, J.R.; Löhner, R., Conservative load projection and tracking for fluid-structure problems, Aiaa j., 35, 4, 687-692, (1997) · Zbl 0895.73077
[56] Farhat, C.; Lesoinne, M.; Le Tallec, P., Load and motion transfer algorithms for fluid-structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. methods appl. mech. engrg., 157, 95-114, (1998) · Zbl 0951.74015
[57] Maman, N.; Farhat, C., Matching fluid and structure meshes for aeroelastic computations: a parallel approach, Comput. struct., 54, 779-785, (1995)
[58] Wohlmuth, B., Discretization methods and iterative solvers based on domain decomposition, Lecture notes in computational science and engineering, vol. 17, (2001), Springer-Verlag Berlin
[59] P. Le Tallec, S. Mani, Conservation laws for fluid-structure interactions, Technical Report CEREMADE, Université de Paris Dauphine, 1999.
[60] Belytschko, T.; Mullen, R., Stability of explicit-implicit mesh partitions in time integration, Int. J. numer. methods engrg., 12, 1575-1586, (1978) · Zbl 0398.65059
[61] Farhat, C.; Lesoinne, M.; Maman, N., Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation law and distributed solution, Int. J. numer. methods fluids, 21, 807-835, (1995) · Zbl 0865.76038
[62] Farhat, C.; Lesoinne, M.; Stern, P., High performance solution of three-dimensional nonlinear elastic problems via parallel partitioned algorithms: methodology and preliminary results, Adv. engrg. software, 28, 43-61, (1997)
[63] Ascher, U.M.; Petzold, L.R., Computer methods for ordinary differential equations and differential-algebraic equations, (1998), SIAM Philadelphia, PA · Zbl 0908.65055
[64] R.L. Taylor, FEAP—A finite element analysis program, User Manual Version 6.3; Dept. of Civil and Environmental Engrg., University of California, Berkeley, CA, 1998.
[65] S. Turek, C. Becker, FEATFLOW User Manual, Release 1.2; Institut für Angewandte Mathematik, Universität Heidelberg, Heidelberg, 1999.
[66] Matthies, H.; Strang, G., The solution of nonlinear finite element equations, Int. J. numer. methods engrg., 14, 1613-1626, (1979) · Zbl 0419.65070
[67] Dennis, J.E.; Schnabel, R.B., Numerical methods for unconstraint optimization and nonlinear equations, (1996), SIAM Philadelphia, PA
[68] Broyden, C.G., The convergence of a class of double-rank minimization algorithms 2, the new algorithm, J. inst. math. appl., 6, 222-231, (1970) · Zbl 0207.17401
[69] Fletcher, R., A new approach to variable-metric algorithms, Comput. J., 13, 317-322, (1970) · Zbl 0207.17402
[70] Goldfarb, D., A family of variable-metric algorithms derived by variational means, Math. comput., 24, 23-26, (1970) · Zbl 0196.18002
[71] Shanno, D.F., Conditioning of quasi-Newton methods for function minimization, Math. comput., 24, 647-656, (1970) · Zbl 0225.65073
[72] Turek, S., Efficient solvers for incompressible flow problems: an algorithmic approach in view of computational aspects, Lecture notes in computational science and engineering, vol. 6, (1999), Springer-Verlag Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.