×

New analytic results for speciation times in neutral models. (English) Zbl 1142.92032

Summary: We investigate the standard G. U. Yule model [A mathematical theory of evolution: based on the conclusions of C. Willis. Phil. Trans. R. Soc., London, Ser. B 213, 21–87 (1924)], and a recently studied model of speciation and extinction, the “critical branching process” [D. Aldous and L. Popovic, A critical branching process model for biodiversity. Adv. Appl. Probab. 37, No. 4, 1094–1115 (2005; Zbl 1099.92053)]. We develop an analytic way, as opposed to the common simulation approach, for calculating the speciation times in a reconstructed phylogenetic tree. Simple expressions for the density and the moments of the speciation times are obtained. Methods for dating a speciation event become valuable, if for the reconstructed phylogenetic trees no time scale is available. A missing time scale could be due to supertree methods, morphological data, or molecular data which violates the molecular clock. Our analytic approach is, in particular, useful for the model with extinction, since simulations of birth-death processes which are conditioned on obtaining \(n\) extant species today are quite delicate. Further, simulations are very time consuming for big \(n\) under both models.

MSC:

92D15 Problems related to evolution
60J85 Applications of branching processes
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)

Citations:

Zbl 1099.92053
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aldous, D.J., 2001. Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Stat. Sci. 16(1), 23–34. ISSN 0883-4237. · Zbl 1127.60313 · doi:10.1214/ss/998929474
[2] Aldous, D., Popovic, L., 2005. A critical branching process model for biodiversity. Adv. Appl. Probab. 37(4), 1094–1115. ISSN 0001-8678. · Zbl 1099.92053 · doi:10.1239/aap/1134587755
[3] Berger, J.O., 1980. Statistical Decision Theory: Foundations, Concepts, and Methods. Springer Series in Statistics. Springer, New York. ISBN 0-387-90471-9. · Zbl 0444.62009
[4] Bininda-Emonds, O.R., Cardillo, M., Jones, K.E., MacPhee, R.D., Beck, R.M., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L., Purvis, A., 2007. The delayed rise of present-day mammals. Nature 446(7135), 507–512. · doi:10.1038/nature05634
[5] Dehling, H., Haupt, B., 2003. Einfuehrung in die Wahrscheinlichkeitstheorie und Statistik. Springer, Berlin. · Zbl 1012.62001
[6] Edwards, A.W.F., 1970. Estimation of the branch points of a branching diffusion process. (With discussion). J. Roy. Stat. Soc. Ser. B 32, 155–174. ISSN 0035-9246. · Zbl 0203.50801
[7] Forster, O., 1981. Analysis 3. Vieweg, Wiesbaden.
[8] Gernhard, T., 2006. Stochastic models of speciation events in phylogenetic trees. Diplom thesis, Technical University of Munich.
[9] Gernhard, T., Ford, D., Vos, R., Steel, M., 2006. Estimating the relative order of speciation or coalescence events on a given phylogeny. Evol. Bioinformatics Online 2, 309–317.
[10] Kingman, J.F.C., 1982a. On the genealogy of large populations. J. Appl. Probab. 19A, 27–43. · Zbl 0516.92011 · doi:10.2307/3213548
[11] Kingman, J.F.C., 1982b. The coalescent. Stoch. Process. Their Appl. 13, 235–248. · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4
[12] Kingman, J.F.C., 1982c. Exchangeability and the evolution of large populations. Exch. Probab. Stat. 97–112. · Zbl 0494.92011
[13] Lebedew, N.N., 1973. Spezielle Funktionen und ihre Anwendung. B.I.-Wissenschaftsverlag.
[14] Ma, N.-Y., Liu, F., 2004. A novel analytical scheme to compute the n-fold convolution of exponential-sum distribution functions. Appl. Math. Comput. 158(1), 225–235. ISSN 0096-3003. · Zbl 1068.62020 · doi:10.1016/j.amc.2003.08.087
[15] Nee, S.C., 2001. Infering speciation rates from phylogenies. Evolution 55(4), 661–668. · doi:10.1554/0014-3820(2001)055[0661:ISRFP]2.0.CO;2
[16] Nee, S.C., May, R.M., Harvey, P., 1994. The reconstructed evolutionary process. Philos. Trans. Roy. Soc. Lond. Ser. B 344, 305–311. · doi:10.1098/rstb.1994.0068
[17] Popovic, L., 2004. Asymptotic genealogy of a critical branching process. Ann. Appl. Probab. 14(4), 2120–2148. ISSN 1050-5164. · Zbl 1062.92048 · doi:10.1214/105051604000000486
[18] Purvis, A., 1995. A composite estimate of primate phylogeny. Philos. Trans. Roy. Soc. Lond. Ser. B 348, 405–421. · doi:10.1098/rstb.1995.0078
[19] Rannala, B., Yang, Z., 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43, 304–311. · doi:10.1007/BF02338839
[20] Reed, W., Hughes, B., 2002. On the size distribution of live genera. J. Theor. Biol. 213(1), 125–135. · doi:10.1006/jtbi.2002.3009
[21] Semple, C., Steel, M., 2003. Phylogenetics. Oxford Lecture Series in Mathematics and its Applications, vol. 24. Oxford University Press, Oxford. · Zbl 1043.92026
[22] Stanhope, M.J., Waddell, V.G., Madsen, O., de Jong, W., Hedges, S.B., Cleven, G.C., Kao, D., Springer, M.S., 1998. Molecular evidence for multiple origins of insectivora and for a new order of endemic African insectivore mammals. Proc. Natl. Acad. Sci. USA 95, 9967–9972. · doi:10.1073/pnas.95.17.9967
[23] Vos, R.A., 2006. A new dated supertree of the primates. PhD thesis.
[24] Yang, Z., Rannala, B., 1997. Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol. Biol. Evol. 17(7), 717–724.
[25] Yule, G.U., 1924. A mathematical theory of evolution: based on the conclusions of Dr. J.C. Willis. Philos. Trans. Roy. Soc. Lond. Ser. B 213, 21–87. · doi:10.1098/rstb.1925.0002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.