×

Similarity-based denoising of point-sampled surfaces. (English) Zbl 1142.94314

Summary: A non-local denoising (NLD) algorithm for point-sampled surfaces (PSSs) is presented based on similarities, including geometry intensity and features of sample points. By using the trilateral filtering operator, the differential signal of each sample point is determined and called “geometry intensity”. Based on covariance analysis, a regular grid of geometry intensity of a sample point is constructed, and the geometry-intensity similarity of two points is measured according to their grids. Based on mean shift clustering, the PSSs are clustered in terms of the local geometry-features similarity. The smoothed geometry intensity, i.e., offset distance, of the sample point is estimated according to the two similarities. Using the resulting intensity, the noise component from PSSs is finally removed by adjusting the position of each sample point along its own normal direction. Experimental results demonstrate that the algorithm is robust and can produce a more accurate denoising result while having better feature preservation.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amenta, N., Kil, Y.J., 2004. Defining point set surfaces. ACM Trans. on Graph., 23(3):264-270. [doi:10.1145/1015706.1015713] · doi:10.1145/1015706.1015713
[2] Buades, A., Coll, B., Morel, J.M., 2005. A Non-Local Algorithm for Image Denoising. Proc. IEEE Computer Society Int. Conf. on Computer Vision and Pattern Recognition, p.60-65. [doi:10.1109/CVPR.2005.38] · Zbl 1108.94004
[3] Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R., 2001. Reconstruction and Representation of 3D Objects with Radial Basis Functions. Proc. ACM SIGGRAPH, p.67-76. [doi:10.1145/383259.383266]
[4] Choudhury, P., Tumblin, J., 2003. The Trilateral Filter for High Contrast Images and Meshes. Int. Conf. on Computer Graphics and Interactive Techniques, p.186-196. [doi:10.1145/1198555.1198565]
[5] Clarenz, U., Rumpf, M., Telea, A., 2004. Fairing of Point Based Surfaces. Proc. Computer Graphics International, p.600-603. [doi:10.1109/CGI.2004.1309272]
[6] Comaniciu, D., Meer, P., 2002. Mean shift: a robust approach toward feature space analysis. IEEE Trans. on Pattern Anal. Machine Intell., 24(5):603-619. [doi:10.1109/34.1000236] · doi:10.1109/34.1000236
[7] Daniels II, J., Ha, L.K., Ochotta, T., Silva, C.T., 2007. Robust Smooth Feature Extraction from Point Clouds. Proc. Shape Modeling International, p.123-136. [doi:10.1109/SMI.2007.32]
[8] Dey, T.K., Sun, J., 2005. An Adaptive MLS Surface for Reconstruction with Guarantees. Proc. Symp. on Geometry Processing, p.43-52.
[9] Fleishman, S., Drori, I., Cohen-Or, D., 2003. Bilateral mesh denoising. ACM Trans. on Graph., 22(3):950-953. [doi:10.1145/882262.882368] · doi:10.1145/882262.882368
[10] Georgescu, B., Shimshoni, I., Meer, P., 2003. Mean Shift Based Clustering in High Dimensions: A Texture Classification Example. ICCV, p.456-463.
[11] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W., 1992. Surface Reconstruction from Unorganized Points. Proc. 19th Annual Conf. on Computer Graphics and Interactive Techniques, p.71-78. [doi:10.1145/133994.134011]
[12] Hu, G.F., Peng, Q.S., Forrest, A.R., 2006. Mean shift denoising of point-sampled surfaces. The Visual Computer, 22(3):147-157. [doi:10.1007/s00371-006-0372-0] · doi:10.1007/s00371-006-0372-0
[13] Jenke, P., Wand, M., Bokeloh, M., Schilling, A., Strasser, W., 2006. Bayesian point cloud reconstruction. Computer Graphics Forum, 25(3):379-388. [doi:10.1111/j.1467-8659.2006.00957.x] · doi:10.1111/j.1467-8659.2006.00957.x
[14] Lange, C., Polthier, K., 2005. Anisotropic smoothing of point sets. Computer Aided Geometric Design, 22(7):680-692. [doi:10.1016/j.cagd.2005.06.010] · Zbl 1119.65310 · doi:10.1016/j.cagd.2005.06.010
[15] Lipman, Y., Cohen-Or, D., Levin, D., 2006. Error Bounds and Optimal Neighborhoods for MLS Approximation. Proc. Eurographics, p.71-80. [doi:10.2312/SGP/SGP06/071-080]
[16] Mederos, B., Velho, L., de Figueiredo, L.H., 2003. Robust Smoothing of Noisy Point Clouds. Proc. SIAM Conf. on Geometric Design and Computing, p.1-13. · Zbl 1060.65542
[17] Pauly, M., Gross, M., 2001. Spectral Processing of Point-Sampled Geometry. Proc. ACM SIGGRAPH, p.379-386. [doi:10.1145/383259.383301]
[18] Pauly, M., Gross, M., Kobbelt, L.P., 2002a. Efficient Simplification of Point-Sampled Surfaces. Proc. IEEE Visualization, p.163-170.
[19] Pauly, M., Kobbelt, L.P., Gross, M., 2002b. Multiresolution Modeling of Point-Sampled Geometry. Technical Report, CS #379, ETH, Zurich.
[20] Pauly, M., Keiser, R., Kobblet, L.P., Gross, M., 2003. Shape modeling with point-sampled geometry. ACM Trans. on Graph., 22(3):641-650. [doi:10.1145/882262.882319] · doi:10.1145/882262.882319
[21] Pauly, M., Mitra, N.J., Guibas, L.J., 2004. Uncertainty and Variability in Point Cloud Surface Data. Proc. Eurographics Symp. on Point-Based Graphics, p.77-84.
[22] Samozino, M., Alexa, M., Alliez, P., Yvinec, M., 2006. Reconstruction with Voronoi Centered Radial Basis Functions. Proc. Eurographics, p.51-60. [doi:10.2312/SGP/SGP06/051-060]
[23] Schall, O., Belyaev, A., Seidel, H.P., 2005. Robust Filtering of Noisy Scattered Point Data. Eurographics Symp. on Point-Based Graphics, p.71-77. [doi:10.2312/SPBG/SPBG05/071-077]
[24] Shamir, A., Shapira, L., Cohen-Or, D., 2006. Mesh analysis using geodesic mean-shift. The Visual Computer, 22(2):99-108. [doi:10.1007/s00371-006-0370-2] · doi:10.1007/s00371-006-0370-2
[25] Weyrich, T., Pauly, M., Keiser, R., Heinzle, S., Scandella, S., Gross, M., 2004. Post-processing of Scanned 3D Surface Data. Proc. Eurographics, p.85-94.
[26] Xiao, C.X., Miao, Y.W., Liu, S., Peng, Q.S., 2006. A dynamic balanced flow for filtering point-sampled geometry. The Visual Computer, 22(3):210-219. [doi:10.1007/s00371-006-0377-8] · doi:10.1007/s00371-006-0377-8
[27] Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., Seidel, H.P., 2005. Feature Sensitive Mesh Segmentation with Mean Shift. Proc. Shape Modeling International, p.236-243. [doi:10.1109/SMI.2005.21]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.