×

zbMATH — the first resource for mathematics

On the existence of Hermitian positive definite solutions of the matrix equation \(X^s+A^*X^{-t}A=Q\). (English) Zbl 1143.15011
Summary: The existence of Hermitian positive definite solutions of the general nonlinear matrix equation \(X^s+A^*X^{-t}A=Q\) is studied systematically and deeply. A new estimate of Hermitian positive definite solutions is derived. Based on a fixed point theorem, some new sufficient conditions and new necessary conditions for the existence of Hermitian positive definite solutions are obtained. In the end, a necessary and sufficient condition for the existence of a Hermitian positive definite solution is proved.

MSC:
15A24 Matrix equations and identities
15A42 Inequalities involving eigenvalues and eigenvectors
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, W.N.; Morley, T.D.; Trapp, G.E., Positive solutions to \(X = A - \mathit{BX}^{- 1} B^\ast\), Linear algebra appl., 134, 53-62, (1990) · Zbl 0702.15009
[2] Bhatia, R., Matrix analysis, Graduate texts in mathematics, vol. 169, (1997), Springer-Verlag Berlin
[3] Du, Sh.; Hou, J., Positive definite solutions of operator equations \(X^m + A^\ast X^{- n} A = I\), Linear and multilinear algebra, 51, 163-173, (2003) · Zbl 1046.47019
[4] Engwerda, Jacob C.; Ran, Andre C.M.; Rijkeboer, Arie L., Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation \(X + A^\ast X^{- 1} A = Q\), Linear algebra appl., 186, 255-275, (1993) · Zbl 0778.15008
[5] Engwerda, Jacob C., On the existence of a positive definite solution of the matrix equation \(X + A^{\operatorname{T}} X^{- 1} A = I\), Linear algebra appl., 194, 91-108, (1993) · Zbl 0798.15013
[6] El-Sayed, Salah M.; El-Alem, Mahmoud, Some properties for the existence of a positive definite solution of matrix equation \(X + A^\ast X^{- 2^m} A = I\), Appl. math. comput., 128, 99-108, (2002) · Zbl 1031.15015
[7] El-Sayed, Salah M.; Al-Dbiban, Asmaa M., On positive definite solutions of the nonlinear matrix equations \(X + A^\ast X^{- n} A = I\), Appl. math. comput., 151, 533-541, (2004) · Zbl 1055.15022
[8] Furuta, T., Operator inequalities associated with holder – mccarthy and Kantorovich inequalities, J. inequal. appl., 6, 137-148, (1998) · Zbl 0910.47014
[9] Hasanov, Vejdi; Ivanov, Ivan, Positive definite solutions of the equation \(X \pm A^\ast X^{- n} A = I\), (), 377-384 · Zbl 0978.65032
[10] Hasanov, V.I.; Ivanov, I.G., Solutions and perturbation estimates for the matrix equations \(X \pm A^\ast X^{- n} A = Q\), Appl. math. comput., 156, 53-525, (2004) · Zbl 1063.15012
[11] Ivanov, Ivan G.; El-Sayed, Salan M., Properties of positive definite solutions of the equation \(X + A^\ast X^{- 2} A = I\), Linear algebra appl., 279, 303-316, (1998) · Zbl 0935.65041
[12] Ivanov, I.G.; Hasanov, V.I.; Minchev, B.V., On matrix equations \(X \pm A^\ast X^{- 2} A = I\), Linear algebra appl., 326, 27-44, (2001) · Zbl 0979.15007
[13] Ivanov, Ivan G., On positive definite solutions of the family of matrix equations \(X + A^\ast X^{- n} A = Q\), J. comput. appl. math., 193, 277-301, (2006) · Zbl 1096.15003
[14] Kailath, T., Linear systems, (1980), Prentice-Hall Englewood Cliffs, NJ · Zbl 0458.93025
[15] Liao, Anping, On positive definite solutions of the matrix equation \(X + A^\ast X^{- n} A = I\), Numer. math.: J. chin. univ., 26, 156-161, (2004) · Zbl 1065.15017
[16] Liu, Xinguo; Gao, Hua, On the positive definite solutions of the matrix equation \(X^s + A^{\operatorname{T}} X^{- t} A = I_n\), Linear algebra appl., 368, 83-97, (2003) · Zbl 1025.15018
[17] Reurings, Martine C.B., Contractive maps on normed linear spaces and their applications to nonlinear matrix equations, Linear algebra appl., 418, 292-311, (2006) · Zbl 1104.15013
[18] Yang, Yueting, The iterative method for solving nonlinear matrix equation \(X^s + A^\ast X^{- t} A = Q\), Appl. math. comput., 188, 46-53, (2007) · Zbl 1131.65039
[19] Zhan, Xingzhi; Xie, Jiangjun, On the matrix equation \(X + A^{\operatorname{T}} X^{- 1} A = I\), Linear algebra appl., 247, 337-345, (1996) · Zbl 0863.15005
[20] Zhang, Fuzhen, Matrix theory, basic results and techniques, (1999), Springer-Verlag · Zbl 0948.15001
[21] Zhang, Yuhai, On Hermitian positive definite solutions of matrix equation \(X + A^\ast X^{- 2} A = I\), Linear algebra appl., 372, 295-304, (2003) · Zbl 1035.15017
[22] Zhang, Shisheng, Fixed point theory and its applications, (1984), Chongqing Press Chongqing, (in Chinese) · Zbl 0569.54041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.