×

zbMATH — the first resource for mathematics

An extension problem related to the fractional Laplacian. (English) Zbl 1143.26002
The authors relate the fractional Laplacian of a function \(f: \mathbb{R}^{n}\rightarrow \mathbb{R}\) to solutions \(u:\mathbb{R}^{n}\times [0,\infty )\rightarrow \mathbb{R}\) of the extension problem \[ \left\{ \begin{matrix} u(x,0)=f(x) \\ \Delta _{x}u+\frac{a}{y}u_{y}+u_{yy}=0. \end{matrix} \right. \] It is shown that \[ \lim_{y\rightarrow 0}y^{a}u_{y}(x,y)=u_{z}(x,0)=-(-\Delta )^{s}f(x) \] where \(s=\frac{1-a}{2}\) and \(z=\left( \frac{y}{1-a}\right) ^{1-a}.\) This work extends the well-known fact that the operator \((-\Delta )^{1/2}\) can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition. Therefore, the present work generalizes this characterization to general fractional powers of the Laplacian. This is also done for other integro-differential operators and some properties of these integro-differential equations are derived.

MSC:
26A33 Fractional derivatives and integrals
35J70 Degenerate elliptic equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Almgren F. J., Almgren’s Big Regularity Paper (2000) · Zbl 0985.49001
[2] Athanasopoulos I., Amer. J. Math.
[3] Bogdan K., Studia Math. 123 pp 43– (1997)
[4] DOI: 10.1353/ajm.1997.0010 · Zbl 0878.35039 · doi:10.1353/ajm.1997.0010
[5] DOI: 10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A · Zbl 0854.35032 · doi:10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A
[6] Fabes E., Ann. Inst. Fourier (Grenoble) 32 pp 151– (1982) · Zbl 0488.35034 · doi:10.5802/aif.883
[7] DOI: 10.1080/03605308208820218 · Zbl 0498.35042 · doi:10.1080/03605308208820218
[8] Fabes , E. B. , Kenig , C. E. , Jerison , D. ( 1983 ). Boundary behavior of solutions to degenerate elliptic equations . In Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vols. I, II. (Chicago, Ill., 1981), Wadsworth Math. Ser. Belmont , CA : Wadsworth , pp. 577 – 589 .
[9] Landkof N. S., Foundations of Modern Potential Theory. (1972) · Zbl 0253.31001 · doi:10.1007/978-3-642-65183-0
[10] DOI: 10.1080/00036818308839425 · Zbl 0513.35013 · doi:10.1080/00036818308839425
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.