zbMATH — the first resource for mathematics

A generalization of the Neumann problem for the Helmholtz equation outside cuts on the plane. (English. Russian original) Zbl 1143.35019
Differ. Equ. 41, No. 9, 1213-1224 (2005); translation from Differ. Uravn. 41, No. 9, 1155-1165 (2005).
The authors deal with a problem that generalizes the Neumann problem for the Helmholtz equation outside cuts on the plane with boundary conditions occurring on the contact surface in some physical problems. The uniqueness of the solution of the problem under consideration is proved based on the energy identities. Using a single layer potential and angular potential, the authors reduce the problem to a singular integral equation of the first kind with additional conditions, which, in turn is reduced to a uniquely solvable Fredholm integral equation of the second kind by some transformations. Moreover, the authors obtain formulas for the singularities of the gradient of the solution at the endpoints of the cuts in closed form.

35J25 Boundary value problems for second-order elliptic equations
35C05 Solutions to PDEs in closed form
45B05 Fredholm integral equations
Full Text: DOI
[1] Krutitskii, P.A., Appl. Math. Letters, 2000, vol. 13, pp. 71–76. · Zbl 0957.35038 · doi:10.1016/S0893-9659(99)00211-6
[2] Lifanov, I.K., Metod singulyarnykh integral’nykh uravnenii i chislennyi eksperiment v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln (The Method of Singular Integral Equations and Numerical Experiment in Mathematical Physics, Aerodynamics, Elasticity, and Wave Diffraction), Moscow: Yanus, 1995. · Zbl 0904.73001
[3] Krutitskii, P.A., Zh. Vychislit. Mat. Mat. Fiz., 1994, vol. 34, no.8–9, pp. 1237–1257.
[4] Krutitskii, P.A., Zh. Vychislit. Mat. Mat. Fiz., 1994, vol. 34, no.11, pp. 1652–1665.
[5] Colton, D. and Kress, R., Integral Equation Methods in Scattering Theory, New York: Wiley, 1983. Translated under the title Metody integral’nykh uravnenii v teorii rasseyaniya, Moscow: Mir, 1987. · Zbl 0621.35002
[6] Krutitskii, P.A., Ann. Univ. Ferrara, 2001, vol. 47, pp. 285–296.
[7] Samarskii, A.A. and Andreev, V.B., Raznostnye metody dlya ellipticheskikh uravnenii (Difference Methods for Elliptic Equations), Moscow: Nauka, 1976.
[8] Friedman, A. and Vogelius, M., Indiana Univ. Math. J., 1989, vol. 38, pp. 497–525. · Zbl 0689.35097 · doi:10.1512/iumj.1989.38.38024
[9] Muskhelishvili, N.I., Singulyarnye integral’nye uravneniya (Singular Integral Equations), Moscow, 1968. · Zbl 0174.16202
[10] Vladimirov, V.S., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow, 1981.
[11] Smirnov, V.I., Kurs vysshei matematiki (Course of Higher Mathematics), Moscow, 1951, vol. 4.
[12] Nikiforov, A.F. and Uvarov, V.B., Spetsial’nye funktsii matematicheskoi fiziki (Special Functions of Mathematical Physics), Moscow, 1984. · Zbl 0567.33001
[13] Krutitskii, P.A., Math. Meth. Appl. Sci., 1995, vol. 18, pp. 897–925. · Zbl 0835.35115 · doi:10.1002/mma.1670181105
[14] Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of Function Theory and Functional Analysis), Moscow, 1981. · Zbl 0501.46002
[15] Matematicheskaya entsiklopediya (Mathematical Encyclopedia), Moscow, 1977, vol. 1, p. 915. · Zbl 0463.00032
[16] Funktsional’nyi analiz (Functional Analysis), Krein, S.G., Ed., Moscow, 1964.
[17] Kantorovich, A.V. and Akilov, G.P., Funktsional’nyi analiz (Functional Analysis), Moscow, 1984. · Zbl 0555.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.