×

Generalized quasi-variational-like hemivariational inequalities. (English) Zbl 1143.49009

Summary: We introduce and study a new class of generalized quasi-variational-like hemivariational inequalities with multi-valued \(\eta \)-pseudomonotone operators in Banach spaces. Some new existence theorems of solutions for this class of generalized quasi-variational-like hemivariational inequalities are proved. The results presented in this paper generalize and extend some known results.

MSC:

49J40 Variational inequalities
47H05 Monotone operators and generalizations
47H04 Set-valued operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aubin, J.P.; Frankowska, H., Set valued analysis, (1990), Birkhäuser Basel
[2] Auslender, A.; Teboulle, M., Asymptotic cones and functions in optimization and variational inequalities, (2003), Springer-Verlag New York · Zbl 1017.49001
[3] Barbu, V., ()
[4] Carl, S.; Le, V.K.; Motreanu, D., The sub-supersolutio method and extremal solutions for quasilinear hemivariational inequalities, Differential integral equations, 17, 165-178, (2004) · Zbl 1164.35301
[5] Carl, S.; Le, V.K.; Motreanu, D., Existence and comparison principles for general quasilinear variational – hemivariational inequalities, J. math. anal. appl., 302, 65-83, (2005) · Zbl 1061.49007
[6] Carl, S.; Le, V.K.; Motreanu, D., Existence and comparison results for quasilinear evolution hemivariational inequalities, Electron. J. differential equations, 57, 1-17, (2004) · Zbl 1053.49005
[7] Chang, K.C., Critical point theorem and its applications, (1986), Shanghai Press of Science and Technology Shanghai, (in Chinese)
[8] Clarke, F.H., Optimization and nonsmooth analysis, (1990), SIAM Philadelphia · Zbl 0727.90045
[9] Filippakis, M.E.; Papageorgious, N.S., Solvability of nonlinear variational – hemivariational inequalities, J. math. anal. appl., 311, 162-181, (2005) · Zbl 1082.49008
[10] Giannessi, F.; Maugeri, A.; Pardalos, P.M., Equilibrium problems: nonsmooth optimization and variational inequality models, (2001), Kluwer Academic Publishers Dordrecht · Zbl 0979.00025
[11] Goeleven, D.; Motreanu, D., Variational and hemivariational inequalities—theory, methods and applications, vol. II: unilateral problems, (2003), Springer-Verlag Berlin · Zbl 1259.49001
[12] Goeleven, D.; Motreanu, D.; Dumont, Y.; Rochdi, M., Variational and hemivariational inequalities—theory, methods and applications, vol. I: unilateral analysis and unilateral mechanic, (2003), Springer-Verlag Berlin · Zbl 1259.49002
[13] Halidias, N.; Naniewicz, Z., On a class of hemivariational inequalities at resonance, J. math. anal. appl., 289, 584-607, (2004) · Zbl 1041.49007
[14] Haslinger, J.; Panagiotopoulos, P.D., Optimal control of systems governed by hemivariational inequalities, existence and approximation results, Nonlinear anal. TMA, 24, 105-119, (1995) · Zbl 0827.49008
[15] Huang, N.J.; Deng, C.X., Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. math. anal. appl., 256, 345-359, (2001) · Zbl 0972.49008
[16] Huang, N.J.; Fang, Y.P., Auxiliary principle technique for soling generalized set-valued nonlinear quasi-variational-like inequalities, Math. inequal. appl., 6, 339-350, (2003) · Zbl 1031.49015
[17] Kinderlehrer, D.; Stampacchia, G., An introduction to variational inequalities and their application, (1980), Academic Press London · Zbl 0457.35001
[18] Kneser, H., Sur un theoreme fondamantel de la theorie des jeux, C.R. acad. sci. Paris, 234, 2418-2420, (1952) · Zbl 0046.12201
[19] Liu, Z.H., Existence results for evolution noncoercive hemivariational inequalities, J. optim. theory appl., 120, 417-427, (2004) · Zbl 1047.49009
[20] Liu, Z.H., Generalized quasi-variational hemi-variational inequalities, Appl. math. lett., 17, 741-745, (2004) · Zbl 1058.49006
[21] Liu, Z.H., Browder – tikhonov regularization of non-coercive evolution hemivariational inequalities, Inverse problems, 21, 13-20, (2005) · Zbl 1078.49006
[22] Lunsford, M.L., Generalized variational and quasi-variational inequalities with discontinuous operators, J. math. anal. appl., 214, 245-263, (1997) · Zbl 0945.49003
[23] Michael, E., Continuous selections, I, Ann. of math., 63, 361-382, (1956) · Zbl 0071.15902
[24] Motreanu, D.; Panagiotopoulos, P.D., Minimax theorems and qualitative properties of the solutions of hemivariational inequalities and applications, (1999), Kluwer Academic Dordrecht · Zbl 1060.49500
[25] Motreanu, D.; Radulescu, V., Variational and non-variational methods in nonlinear analysis and boundary value problems, (2003), Springer-Verlag Berlin · Zbl 1040.49001
[26] Naniewicz, Z.; Panagiotopoulos, P.D., Mathematical theory of hemivariational inequalities and applications, (1995), Marcel Dekker New York · Zbl 0968.49008
[27] Panagiotopoulos, P.D., Hemivariational inequalities, applications in mechanics and engineering, (1993), Springer-Verlag Berlin · Zbl 0826.73002
[28] Panagiotopoulos, P.D., Coercive and semicoercive hemivariational inequalities, Nonlinear anal. TMA, 16, 209-231, (1991) · Zbl 0733.49012
[29] Panagiotopoulos, P.D., Nonconvex energy functions, hemivariational inequalities and substationarity principles, Acta mech., 42, 160-183, (1983) · Zbl 0538.73018
[30] Panagiotopoulos, P.D.; Fundo, M.; Radulescu, V., Existence theorems of hartman – stampacchia type for hemivariational inequalities and applications, J. global optim., 15, 41-54, (1999) · Zbl 0951.49018
[31] Parida, J.; Sen, A., A variational-like inequality for multifunctions with applications, J. math. anal. appl., 124, 73-81, (1987) · Zbl 0615.49003
[32] Schaible, S.; Yao, J.C.; Zeng, L.C., A proximal method for pseudomonotone type variational-like inequalities, Taiwanese J. math., 10, 497-513, (2006) · Zbl 1116.49004
[33] Xiao, Y.B.; Huang, N.J., Sub-supersolution method and extremal solutions for higher order quasi-linear elliptic hemi-variational inequalities, Nonlinear anal. TMA, 66, 1739-1752, (2007) · Zbl 1110.49012
[34] Zeidler, E., Nonlinear functional analysis and its applications I, (1990), Springer-Verlag Berlin
[35] Zeng, L.C.; Guu, S.M.; Yao, J.C., Iterative algorithm for completely generalized set-valued strongly nonlinear mixed variational-like inequalities, Comput. math. appl., 50, 935-945, (2005) · Zbl 1081.49011
[36] Zeng, L.C.; Lin, L.J.; Yao, J.C., Auxiliary problem method for mixed variational-like inequalities, Taiwanese J. math., 10, 515-529, (2006) · Zbl 1259.49010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.