×

zbMATH — the first resource for mathematics

Common fixed points for maps on metric space with \(w\)-distance. (English) Zbl 1143.54018
The authors prove several fixed point theorems on a complete metric space endowed with a \(w\)-distance [see O. Kada. T. Suzuki, W. Takahashi, Math. Jap. 44, 381–391 (1996; Zbl 0897.54029)]. These theorems extend and generalize some previous results of Das and Naik, Ćirić, Jungck and Ume.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions, Trans. am. math. soc., 215, 241-251, (1976) · Zbl 0305.47029
[2] Ćirić, Lj. B., A generalization of banach’s contraction principle, Proc. am. math. soc., 45, 267-273, (1974) · Zbl 0291.54056
[3] Ćirić, Lj. B., Quasi contraction nonself mappings on Banach spaces, Bull. acad. serbe sci. arts, cl. sci. math. natur. sci. math., 23, 25-31, (1998) · Zbl 1261.47070
[4] Ćirić, Lj. B.; Ume, J.S.; Khan, M.S.; Pathak, H.K., On some non-self mappings, Math. nach., 251, 28-33, (2003) · Zbl 1024.47033
[5] Das, K.M.; Naik, K.V., Common fixed point theorems for commuting maps on a metric space, Proc. am. math. soc., 77, 3, 369-373, (1979) · Zbl 0418.54025
[6] Ekelend, I., Nonconvex minimization problems, Bull. am. math. soc., 1, 443-474, (1979)
[7] Gajić, Lj.; Rakočević, V., Quasi-contractive nonself mappings on convex metric spaces and common fixed point theorems, Fixed points theory appl., 3, 365-375, (2005) · Zbl 1104.54018
[8] Gajić, Lj.; Rakočević, V., Pair of non-self-mappings and common fixed points, Appl. math. comput., 187, 999-1006, (2007) · Zbl 1118.54304
[9] Jungck, G., Commuting maps and fixed points, Am. math. monthly, 83, 261-263, (1976) · Zbl 0321.54025
[10] Jungck, G., Compatible mappings and common fixed points, Int. J. math. sci., 9, 771-779, (1986) · Zbl 0613.54029
[11] Kada, O.; Suzuki, T.; Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete matrix spaces, Math. japonica, 44, 381-391, (1996) · Zbl 0897.54029
[12] Kaneko, H.; Sessa, S., Fixed point theorems for compatible multi-valued and single-valued mappings, Int. J. math. math. sci., 12, 2, 257-262, (1989) · Zbl 0671.54023
[13] Rakočević, V., Functional analysis, (1994), Naučna knjiga Beograd
[14] Rakočević, V., Quasi contraction nonself mappings on Banach spaces and common fixed point theorems, Publ. math. debrecen, 58, 451-460, (2001) · Zbl 0980.46037
[15] Sessa, S., On weak commutativity condition of mappings in fixed point considerations, Publ. inst. math. (beograd), 46, 149-153, (1982) · Zbl 0523.54030
[16] Takahashi, W., A convexity in metric space and nonexpansive mappings, I. kodai math. sem. pep., 22, 142-149, (1970) · Zbl 0268.54048
[17] Ume, J.S., Fixed point theorems related to ćirić contraction principle, J. math. anal. appl., 225, 630-640, (1998) · Zbl 0917.54047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.