×

zbMATH — the first resource for mathematics

Non-fragile guaranteed cost control for uncertain neutral dynamic systems with time-varying delays in state and control input. (English) Zbl 1143.93338
Summary: This article considers a non-fragile guaranteed cost control problem for a class of uncertain neutral system with time-varying delays in both state and control input. Delay-dependent criteria are proposed to guarantee the robust stabilization of systems. Linear Matrix Inequality (LMI) optimization approach is used to solve the non-fragile guaranteed cost control problem. Non-fragile guaranteed cost control for unperturbed neutral system is considered in the first step. Robust non-fragile guaranteed cost control for uncertain neutral system is designed directly from the unperturbed condition. An efficient approach is proposed to design the non-fragile guaranteed cost control for uncertain neutral systems. LMI toolbox of Matlab is used to implement the proposed results. Finally, a numerical example is illustrated to show the usefulness of the proposed results.

MSC:
93D21 Adaptive or robust stabilization
34K20 Stability theory of functional-differential equations
93B35 Sensitivity (robustness)
93C23 Control/observation systems governed by functional-differential equations
34K40 Neutral functional-differential equations
Software:
LMI toolbox; Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hale, J.K.; Verduyn Lunel, M., Introduction to functional differential equations, (1993), Springer-Verlag New York · Zbl 0787.34002
[2] Kolmanovskii, V.B.; Myshkis, A., Applied theory of functional differential equations, (1992), Kluwer Academic Publishers Netherlands
[3] Lien, C.H., Further results on delay-dependent robust stability of uncertain fuzzy systems with time- varying delay, Chaos, solitons & fractals, 28, 422-427, (2006) · Zbl 1091.93022
[4] Liu, X.; Zhang, H., New stability criterion of uncertain systems with time-varying delay, Chaos, solitons & fractals, 26, 1343-1348, (2005) · Zbl 1075.34072
[5] Balanov, A.G.; Janson, N.B.; McClintock, P.V.E.; Tucker, R.W.; Wang, C.H.T., Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string, Chaos, solitons & fractals, 15, 381-394, (2003) · Zbl 1037.34075
[6] He, Y.; Wu, M.; She, J.H.; Liu, G.P., Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays, Syst control lett, 51, 57-65, (2004) · Zbl 1157.93467
[7] Lien, C.H., Stability and stabilization criteria for a class of uncertain neutral systems with time-varying delays, J optim theory appl, 124, 637-657, (2005) · Zbl 1076.65061
[8] Park, J.H., Design of dynamic controller for neutral differential systems with delay in control input, Chaos, solitons & fractals, 23, 503-509, (2005) · Zbl 1144.34386
[9] Park, J.H.; Kwon, O.M., Controlling uncertain neutral dynamic systems with delay in control input, Chaos, solitons & fractals, 26, 805-812, (2005) · Zbl 1091.34045
[10] Shao, Z.H., Robust stability of uncertain neutral delay systems, IEEE trans ind electron, 51, 730-733, (2004)
[11] Xu, S.; Lam, J.; Zou, Y., Further results on delay-dependent robust stability conditions of uncertain neutral stems, Int J robust nonlinear control, 15, 233-246, (2005) · Zbl 1078.93055
[12] Wu, M.; He, Y.; She, J.H.; Liu, G.P., Delay-dependent criteria for robust stability of time-varying delay systems, Automatica, 40, 1435-1439, (2004) · Zbl 1059.93108
[13] Kwon, O.M.; Park, J.H., Guaranteed cost control for uncertain large-scale systems with time-delays via delayed feedback, Chaos, solitons & fractals, 27, 800-812, (2006) · Zbl 1094.93020
[14] Park, J.H., Dynamic output guaranteed cost controller for neutral systems with input delay, Chaos, solitons & fractals, 23, 1819-1828, (2005) · Zbl 1135.93368
[15] Park, J.H.; Choi, K., Guaranteed cost control of uncertain nonlinear neutral systems via memory state feedback, Chaos, solitons & fractals, 24, 183-190, (2005) · Zbl 1072.93014
[16] Park, J.H.; Kwon, O.M., Guaranteed cost control of time-delay chaotic systems, Chaos, solitons & fractals, 27, 1011-1018, (2006) · Zbl 1102.37305
[17] Xu, S.; Lam, J.; Yang, C.; Verrist, E.I., An LMI approach to guaranteed cost control for uncertain linear neutral delay systems, Int J robust nonlinear control, 13, 35-53, (2003) · Zbl 1011.93063
[18] Dorato P. Non-fragile controller design: an overview. American Control Conference, Philadelphia, PA; 1998. p. 2829-31.
[19] Ho, M.T.; Datta, A.; Bhattacharyya, S.P., Robust non-fragile PID controller design, Int J robust nonlinear control, 11, 681-708, (2001) · Zbl 0993.93009
[20] Park, J.H., Robust non-fragile guaranteed cost control of uncertain large-scale systems with time-delays in subsystem interconnections, Int J syst sci, 35, 233-241, (2004) · Zbl 1067.93054
[21] Xu, S.; Lam, J.; Wang, J.L.; Yang, G.H., Non-fragile positive real control for uncertain linear neutral delay systems, Syst control lett, 52, 59-74, (2004) · Zbl 1157.93418
[22] Yee, J.S.; Yang, G.H.; Wang, J.L., Non-fragile guaranteed cost control for discrete-time uncertain linear systems, Int J syst sci, 32, 845-853, (2001) · Zbl 1003.49024
[23] Yue, D.; Lam, J., Non-fragile guaranteed cost control for uncertain descriptor systems with time-varying state and input delays, Optim control appl meth, 26, 85-105, (2005)
[24] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M., LMI control toolbox user’s guide, (1995), The Mathworks Massachusetts
[25] Gu, K.; Kharitonov, V.L.; Chen, J., Stability of time-delay systems, (2003), Birkhauser Massachusetts · Zbl 1039.34067
[26] Boyd, L.; Ghaoui, El; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia · Zbl 0816.93004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.