×

zbMATH — the first resource for mathematics

Piecewise affine models of chaotic attractors: The Rössler and Lorenz systems. (English) Zbl 1144.37311
Editorial remark: No review copy delivered

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0375-9601(76)90101-8 · Zbl 1371.37062
[2] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129
[3] DOI: 10.1109/TCS.1984.1085459 · Zbl 0551.94020
[4] DOI: 10.1109/TCS.1986.1085869 · Zbl 0634.58015
[5] DOI: 10.1142/S0218127403007357 · Zbl 1067.94594
[6] DOI: 10.1016/S0960-0779(02)00582-9
[7] DOI: 10.1142/S0218127405013356
[8] DOI: 10.1142/S0218127497001138 · Zbl 0965.93036
[9] DOI: 10.1016/S0167-2789(01)00313-X · Zbl 1098.34508
[10] DOI: 10.1016/0020-0255(94)90097-3 · Zbl 0827.58039
[11] DOI: 10.1109/91.755395
[12] DOI: 10.1016/S0893-6080(00)00024-1
[13] DOI: 10.1016/j.automatica.2003.08.006 · Zbl 1037.93023
[14] DOI: 10.1103/PhysRevLett.59.845
[15] DOI: 10.1103/PhysRevE.69.056206
[16] DOI: 10.1109/TCSI.2004.823664 · Zbl 1374.37069
[17] DOI: 10.1016/0167-2789(92)90111-Y · Zbl 1194.37135
[18] DOI: 10.1063/1.166076
[19] DOI: 10.1103/RevModPhys.70.1455 · Zbl 1205.37002
[20] Bergé P., L’ordre Dans le Chaos (1984)
[21] DOI: 10.1016/S0092-8240(77)80015-3
[22] DOI: 10.1103/PhysRevE.70.056214
[23] DOI: 10.1103/PhysRevE.72.026212
[24] DOI: 10.1103/PhysRevE.63.016206
[25] DOI: 10.1103/PhysRevE.49.3492
[26] Poincaré H., J. Math. Pures Appl. 7 pp 375– (1881)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.