×

Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. (English) Zbl 1144.37378

Editorial remark: No review copy delivered

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019
[2] DOI: 10.1109/31.75404
[3] DOI: 10.1016/S0370-1573(02)00137-0 · Zbl 0995.37022
[4] DOI: 10.1103/PhysRevLett.86.5204
[5] DOI: 10.1103/PhysRevE.49.4882
[6] DOI: 10.1109/81.633887
[7] DOI: 10.1016/j.physleta.2004.04.004 · Zbl 1161.94389
[8] DOI: 10.1103/PhysRevLett.76.1816
[9] DOI: 10.1103/PhysRevE.71.067201
[10] DOI: 10.1103/PhysRevLett.78.4193
[11] DOI: 10.1103/PhysRevLett.76.1804
[12] DOI: 10.1134/1.1783411
[13] DOI: 10.1063/1.1775991 · Zbl 1080.37029
[14] DOI: 10.1063/1.1857615
[15] DOI: 10.1103/PhysRevE.71.056204
[16] DOI: 10.1103/PhysRevE.71.056204
[17] DOI: 10.1134/1.1926439
[18] DOI: 10.1103/PhysRevE.62.7497
[19] DOI: 10.1209/epl/i2004-10488-6
[20] DOI: 10.1103/PhysRevLett.64.1196 · Zbl 0964.37501
[21] DOI: 10.1103/PhysRevLett.76.904
[22] DOI: 10.1063/1.1749233 · Zbl 1080.93016
[23] DOI: 10.1103/PhysRevE.50.1874
[24] DOI: 10.1103/PhysRevLett.73.3528
[25] DOI: 10.1103/PhysRevE.59.R2523
[26] DOI: 10.1109/81.940183 · Zbl 1003.93041
[27] Tanaka K., IEEE World Congress on Fuzzy Systems Proceedings 1 pp 434– (1998)
[28] DOI: 10.1109/3477.907565
[29] DOI: 10.1016/S0167-2789(97)00116-4 · Zbl 0925.93414
[30] DOI: 10.1016/S0960-0779(96)00060-4 · Zbl 1079.37515
[31] DOI: 10.1016/S0960-0779(98)00328-2 · Zbl 0985.37106
[32] DOI: 10.1016/S0375-9601(00)00777-5 · Zbl 0972.37019
[33] DOI: 10.1142/S0218127402005388 · Zbl 1047.34060
[34] DOI: 10.1016/j.physleta.2003.12.011 · Zbl 1118.81326
[35] DOI: 10.1103/PhysRevE.71.037203
[36] DOI: 10.1063/1.1635095 · Zbl 1080.37092
[37] Yassen M. T., Appl. Math. Comput. 135 pp 113– (2001) · Zbl 1038.34041
[38] DOI: 10.1016/S0960-0779(04)00380-7
[39] DOI: 10.1016/j.chaos.2004.04.024 · Zbl 1061.93509
[40] DOI: 10.1038/32567
[41] DOI: 10.1016/S0167-2789(97)00312-6 · Zbl 0941.34027
[42] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129
[43] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013
[44] DOI: 10.1016/0375-9601(79)90150-6 · Zbl 0996.37502
[45] Lasalle J., Stability by Lyapunov’s Direct Method with Application (1961)
[46] DOI: 10.1103/PhysRevE.67.016217
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.