zbMATH — the first resource for mathematics

Lyapunov exponent and the distribution of the periodic points of an endomorphism of \(\mathbb {CP}^ k\). (Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de \(\mathbb {CP}^ k\).) (French) Zbl 1144.37436

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
32H50 Iteration of holomorphic maps, fixed points of holomorphic maps and related problems for several complex variables
37A25 Ergodicity, mixing, rates of mixing
32V35 Finite-type conditions on CR manifolds
32V15 CR manifolds as boundaries of domains
Full Text: DOI
[1] Alexander, H. J. &Taylor, B. A., Comparison of two capacities inC n .Math. Z., 186 (1984), 407–417. · Zbl 0576.32029 · doi:10.1007/BF01174894
[2] Bedford, E., Lyubich, M. Yu. &Smillie, J., Distribution of periodic points of polynomial diffeomorphisms ofC 2.Invent. Math., 114 (1993), 272–288. · Zbl 0799.58039 · doi:10.1007/BF01232671
[3] Briend, J.-Y., Exposants de Liapounoff et points périodiques d’endomorphismes holomorphes deCP k . Thèse de doctorat de l’université Paul Sabatier, Toulouse, 1997.
[4] Brolin, H., Invariant sets under iteration of rational functions.Ark. Mat., 6 (1965), 103–144. · Zbl 0127.03401 · doi:10.1007/BF02591353
[5] Cornfeld, I. P., Fomin, S. V. &Sinai, Ya. G.,Ergodic Theory. Grundlehren Math. Wiss., 245. Springer-Verlag, New York-Berlin, 1982.
[6] Fornæss, J. E. &Sibony, N., Complex dynamics in higher dimensions, dansComplex Potential Theory (Montreal, PQ, 1993), p. 131–186. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 439. Kluwer, Dordrecht, 1994. · Zbl 0811.32019
[7] –, Oka’s inequality for currents and applications.Math. Ann., 301 (1995), 399–415. · Zbl 0832.32010 · doi:10.1007/BF01446636
[8] Freire, A., Lopes, A. &Mañé, R., An invariant measure for rational maps.Bol. Soc. Brasil. Mat., 14 (1983), 45–62. · Zbl 0568.58027 · doi:10.1007/BF02584744
[9] Hubbard, J. H. &Papadopol, P., Superattractive fixed points inC n .Indiana Univ. Math. J., 43 (1994), 321–365. · Zbl 0858.32023 · doi:10.1512/iumj.1994.43.43014
[10] Klimek, M.,Pluripotential Theory. London Math. Soc. Monographs (N.S.), 6. Oxford Univ. Press, New York, 1991.
[11] Lyubich, M. Yu., Entropy properties of rational endomorphisms of the Riemann sphere.Ergodic Theory Dynamical Systems, 3 (1983), 351–385. · Zbl 0537.58035
[12] Pollicott, M.,Lectures on Ergodic theory and Pesin Theory on Compact Manifolds. London Math. Soc. Lecture Note Ser., 180. Cambridge Univ. Press, Cambridge, 1993. · Zbl 0772.58001
[13] Ruelle, D., An inequality for the entropy of differentiable maps.Bol. Soc. Brasil. Mat., 9 (1978), 83–87. · Zbl 0432.58013 · doi:10.1007/BF02584795
[14] Tortrat, P., Aspects potentialistes de l’itération des polynômes, dansSéminaire de théorie du potentiel, Paris, no 8, p. 195–209. Lecture Notes in Math., 1235. Springer-Verlag, Berlin, 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.