×

zbMATH — the first resource for mathematics

Efficient experimental designs for sigmoidal growth models. (English) Zbl 1144.62057
Summary: For the Weibull- and Richards-regression model robust designs are determined by maximizing a minimum of \(D\)- or \(D_{1}\)-efficiencies, taken over a certain range of the nonlinear parameters. It is demonstrated that the derived designs yield a satisfactory solution of the optimal design problem for this type of model in the sense that these designs are efficient and robust with respect to misspecification of the unknown parameters. Moreover, the designs can also be used for testing the postulated form of the regression model against a simplified sub-model.

MSC:
62K05 Optimal statistical designs
62K25 Robust parameter designs
62J12 Generalized linear models (logistic models)
62F03 Parametric hypothesis testing
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atkinson, A.C.; Fedorov, V.V., The design of experiments for discriminating between two rival models, Biometrika, 62, 1, 57-70, (1975) · Zbl 0308.62071
[2] Becka, M.; Urfer, W., Statistical aspects of inhalation toxicokinetics, Environ. ecol. statist., 3, 51-64, (1996)
[3] Becka, M.; Bolt, H.M.; Urfer, W., Statistical evaluation of toxicokinetic data, Environmetrics, 4, 311-322, (1993)
[4] Braess, D., Dette, H., 2005. On the number of support points of maximin and Bayesian D-optimal designs in non-linear regression models. Technical Report, Ruhr-Universität Bochum. Available at: ⟨http://www.ruhr-uni-bochum.de/mathematik3/preprint.htm⟩.
[5] Chaloner, K.; Verdinelli, I., Bayesian experimental design: a review, Statist. sci., 10, 273-304, (1995) · Zbl 0955.62617
[6] Chernoff, H., Locally optimal designs for estimating parameters, Ann. math. statist., 24, 586-602, (1953) · Zbl 0053.10504
[7] Coleman, M.; Marks, H., Topics in dose – response modelling, J. food protection, 61, 11, 1550-1559, (1998)
[8] Dette, H., A generalization of D- and D1-optimal designs in polynomial regression, Ann. statist., 18, 1784-1805, (1990) · Zbl 0714.62068
[9] Dette, H., Optimal designs for identifying the degree of a polynomial regression, Ann. statist., 23, 1248-1266, (1995) · Zbl 0847.62064
[10] Dette, H., Designing experiments with respect to standardized optimality criteria, J. roy. statist. soc. ser. B, 59, 1, 97-110, (1997) · Zbl 0884.62081
[11] Dette, H.; Biedermann, S., Robust and efficient designs for the michaelis – menten model, J. amer. statist. assoc., 98, 679-686, (2003) · Zbl 1040.62065
[12] Dette, H.; Neugebauer, H.-M., Bayesian \(D\)-optimal designs for exponential regression models, J. statist. plann. inference, 60, 2, 331-349, (1997) · Zbl 0900.62408
[13] Dette, H., Haines, L.M., Imhof, L., 2007. Maximin and Bayesian optimal designs for regression models. Statist. Sin., to appear. · Zbl 1144.62056
[14] Dette, H.; Melas, V.B.; Wong, W.K., Optimal design for goodness-of-fit of the michaelis – menten enzyme kinetic function, J. amer. statist. assoc., 100, 1370-1381, (2005) · Zbl 1117.62316
[15] Han, C.; Chaloner, K., Bayesian experimental design for non-linear mixed-effect models with applications to HIV dynamics, Biometrics, 60, 25-33, (2004) · Zbl 1130.62316
[16] Imhof, L.A., Maximin designs for exponential growth models and heteroscedastic polynomial models, Ann. statist., 29, 2, 561-576, (2001) · Zbl 1012.62081
[17] Imhof, L.A.; Wong, W.K., A graphical method for finding maximin designs, Biometrics, 56, 113-117, (2000) · Zbl 1060.62544
[18] Jennrich, R.J., Asymptotic properties of non-linear least squares estimators, Ann. math. statist., 40, 633-643, (1969) · Zbl 0193.47201
[19] Karlin, S.; Studden, W., Tchebysheff systems: with application in analysis and statistics, (1966), Wiley New York · Zbl 0153.38902
[20] Kiefer, J.C., General equivalence theory for optimum designs (approximate theory), Ann. statist., 2, 849-879, (1974) · Zbl 0291.62093
[21] Kiefer, J.; Wolfowitz, J., The equivalence of two extremum problems, Canad. J. math., 12, 363-366, (1960) · Zbl 0093.15602
[22] Krug, H.; Liebig, H.-P., Static regression models for planning greenhouse production, Acta horticulturae, 230, 427-433, (1988)
[23] Landaw, E.W.; DiStefano, J.J., Multiexponential, multicompartmental, and noncompartmental modeling. II. data analysis and statistical considerations, Amer. J. physiol., 246, 665-677, (1984)
[24] Liebig, H.-P., Temperature integration by kohlrabi growth, Acta horticulturae, 230, 371-380, (1988)
[25] Müller, C.H., Maximin efficient designs for estimating non-linear aspects in linear models, J. statist. plann. inference, 44, 1, 117-132, (1995) · Zbl 0812.62081
[26] Pronzato, L.; Walter, E., Robust experimental design via stochastic approximation, Math. biosci., 75, 103-120, (1985) · Zbl 0593.62070
[27] Pukelsheim, F., Optimal design of experiments, (1993), Wiley New York · Zbl 0834.62068
[28] Pukelsheim, F.; Rieder, S., Efficient rounding of approximate designs, Biometrika, 79, 763-770, (1992)
[29] Pukelsheim, F.; Torsney, B., Optimal weights for experimental designs on linearly independent support points, Ann. statist., 19, 1614-1625, (1991) · Zbl 0729.62063
[30] Ratkowsky, D.A., Non-linear regression, (1983), Dekker New York
[31] Silvey, S.D., Optimal design, (1980), Chapman & Hall London · Zbl 0468.62070
[32] Stigler, S.M., Optimal experimental design for polynomial regression, J. amer. statist. assoc., 66, 311-318, (1971) · Zbl 0217.51701
[33] Studden, W.J., Some robust type \(D\)-optimal designs in polynomial regression, J. amer. statist. assoc., 77, 916-921, (1982) · Zbl 0505.62062
[34] Vanclay, J.K.; Skovsgaard, J.P., Evaluating forest growth models, Ecol. model., 98, 1-12, (1997)
[35] Van der Vaart, A.W., Asymptotic statistics, (1998), Cambridge University Press Cambridge · Zbl 0910.62001
[36] Zeide, B., Analysis of growth equations, For. sci., 39, 594-616, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.