×

The decomposition method for solving the coupled modified KdV equations. (English) Zbl 1144.65318

Summary: In this paper, the Adomian decomposition method for the approximate solution of coupled modified KdV equations with appropriate initial values is implemented. By using this method, the solution is calculated in the form of power series. The method does not need linearization, weak nonlinearity assumption or perturbation theory. By using the Maple Program, Adomian polynomials of the obtained series solution have been evaluated.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Q53 KdV equations (Korteweg-de Vries equations)

Software:

Maple
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press Cambridge · Zbl 0762.35001
[2] Wadati, M.; Sanuki, H.; Konno, K., Progr. theoret. phys., 53, 419, (1975)
[3] Gardner, C.S.; Green, J.M.; Kruskal, M.D.; Miura, R.M., Phys. rev. lett., 19, 1095, (1967)
[4] Hirota, R., Phys. rev. lett., 27, 1192, (1971)
[5] ()
[6] Malfeit, W., Amer. J. phys., 60, 650, (1992)
[7] Yan, C.T., Phys. lett. A., 224, 77, (1996)
[8] Wang, M.L., Phys. lett. A, 215, 279, (1996)
[9] Yan, Z.Y.; Zhang, H.Q., J. phys. A, 34, 1785, (2001)
[10] Yan, Z.Y.; Zhang, H.Q., Appl. math. mech., 21, 382, (2000)
[11] Yan, Z.Y.; Zhang, H.Q., Phys. lett. A, 285, 355, (2001)
[12] Yan, Z.Y., Phys. lett. A, 292, 100, (2001)
[13] Fan, E., Phys. lett. A, 282, 18, (2001)
[14] Wu, Y.T.; Geng, X.G.; Hu, X.B.; Zhu, S.M., Phys. lett. A, 255, 259, (1999)
[15] Hirota, R.; Satsuma, J., Phys. lett. A, 85, 407, (1981)
[16] Satsuma, J.; Hirota, R., J. phys. soc. Japan, 51, 332, (1982)
[17] Fan, E.G.; Zhang, H.Q., Phys. lett. A, 246, 403, (1998)
[18] Malfliet, W., Amer. J. phys., 60, 650, (1992)
[19] Adomian, G., Math. comput. modelling, 22, 103, (1995)
[20] Adomian, G., The decomposition method, (1994), Kluwer Academic Publication Boston · Zbl 0803.35020
[21] Adomian, G., Nonlinear stochastic operator equation, (1986), Acad. Press San Diego, CA · Zbl 0596.60094
[22] Adomian, G., J. comput. appl. math., 11, 225, (1984)
[23] Adomian, G., J. math. anal. appl., 113, 202, (1986)
[24] El-Wakil, S.A.; Abdou, M.A.; El-hanbly, A., Appl. math. comput., 177, 729-736, (2006)
[25] El-Wakil, S.A.; El-hanbly, A.; Abdou, M.A., Appl. math. comput., 182, 313-324, (2006)
[26] El-hanbly, A.; Abdou, M.A., Appl. math. comput., 182, 301-312, (2006)
[27] Abdou, M.A., Jqsrt, 95, 407-414, (2005)
[28] Wazwaz, A.M., Appl. math. comput., 100, 13, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.