zbMATH — the first resource for mathematics

Further properties of steady-state solutions to the Navier-Stokes problem past a three-dimensional obstacle. (English) Zbl 1144.81345
Summary: We show that the weak formulation of the steady-state Navier-Stokes problem in the exterior of a three-dimensional compact set (closure of a bounded domain), corresponding to a nonzero velocity at infinity and subjected to a given body force, is equivalent to a nonlinear equation in appropriate Banach spaces. We thus show that the relevant nonlinear operator enjoys a number of fundamental properties that allow us to derive many significant results for the original problem. In particular, we prove that the manifold constituted by the pairs \((u,\lambda)\), with lambda the nondimensional speed at infinity (Reynolds number) and \(u\) weak solution corresponding to lambda and to a given body force \(f\), is, for “generic” \(f\), a \(C^\infty\) one-dimensional manifold, and that, for almost any lambda, the number of solutions is finite. We also show that, for any given \(f\) in the appropriate function space and any given \(\lambda>0\), the corresponding solutions can be “controlled” by their specification only in a suitable neighborhood, \(I\), of the boundary. The “size” of \(I\) depends only on \(\lambda\) and \(f\). Furthermore, we analyze the steady bifurcation properties of branches of these solutions and prove that, in some important cases, the sufficient conditions for bifurcation formally coincide with the analogous ones for flow in a bounded domain. Finally, the stability of these solutions is analyzed. The paper ends with a section on relevant open questions.

76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76E99 Hydrodynamic stability
Full Text: DOI
[1] DOI: 10.1070/SM1973v020n01ABEH001823 · Zbl 0285.76009 · doi:10.1070/SM1973v020n01ABEH001823
[2] DOI: 10.1070/SM1973v020n01ABEH001823 · Zbl 0285.76009 · doi:10.1070/SM1973v020n01ABEH001823
[3] Babenko K. I., Dokl. Akad. Nauk SSSR 262 pp 64– (1982)
[4] Babenko K. I., Sov. Phys. Dokl. 27 pp 25– (1982)
[5] Batchelor G. K., An Introduction to Fluid Mechanics (1981)
[6] Berger M. S., Lectures on Nonlinear Problems in Mathematical Analysis, in: Nonlinearity and Functional Analysis (1977) · Zbl 0368.47001
[7] Besov, O. V. , Il’in, V. P. , Kudrjavcev, L. D. , Lizorkin, P. I. , and Nikol’kiĭ, S. M. , Proceeding of the Symposium Dedicated to the 60th Birthday of S. L. Sobolev [Nauka, Moscow, 1970], pp. 38–63.
[8] DOI: 10.2307/2001234 · Zbl 0707.35118 · doi:10.2307/2001234
[9] DOI: 10.1007/BF00284188 · Zbl 0104.42305 · doi:10.1007/BF00284188
[10] DOI: 10.1007/BF00253485 · Zbl 0149.44606 · doi:10.1007/BF00253485
[11] Foiaş C., Rend. Semin. Matermatico Univ. di Padova 39 pp 1– (1967)
[12] DOI: 10.1002/cpa.3160300202 · Zbl 0335.35077 · doi:10.1002/cpa.3160300202
[13] DOI: 10.2307/2007402 · Zbl 0563.35058 · doi:10.2307/2007402
[14] DOI: 10.1088/0951-7715/4/1/009 · Zbl 0714.34078 · doi:10.1088/0951-7715/4/1/009
[15] Galdi G. P., Springer Tracts in Natural Philosophy Vol. 38, in: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems (1998)
[16] Galdi G. P., Springer Tracts in Natural Philosophy Vol. 39, in: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems (1998)
[17] DOI: 10.1007/s00205-005-0395-0 · Zbl 1094.76017 · doi:10.1007/s00205-005-0395-0
[18] DOI: 10.1007/s002050050043 · Zbl 0898.35071 · doi:10.1007/s002050050043
[19] DOI: 10.1007/BF00375129 · Zbl 0719.76035 · doi:10.1007/BF00375129
[20] DOI: 10.1007/978-3-0348-8765-6_13 · doi:10.1007/978-3-0348-8765-6_13
[21] DOI: 10.1007/s002050000104 · Zbl 0965.35111 · doi:10.1007/s002050000104
[22] DOI: 10.1007/978-3-0348-7509-7 · doi:10.1007/978-3-0348-7509-7
[23] DOI: 10.1512/iumj.1980.29.29048 · Zbl 0494.35077 · doi:10.1512/iumj.1980.29.29048
[24] Ladyzhenskaya O. A., Usp. Mat. Nauk 14 pp 75– (1959)
[25] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow (1969) · Zbl 0184.52603
[26] Leray J., J. Math. Pures Appl. 12 pp 1– (1933)
[27] Leray J., Enseign. Math. 35 pp 139– (1936)
[28] DOI: 10.1007/BF01766587 · Zbl 0632.76033 · doi:10.1007/BF01766587
[29] DOI: 10.1007/BF01161636 · Zbl 0642.35067 · doi:10.1007/BF01161636
[30] DOI: 10.1063/1.861328 · doi:10.1063/1.861328
[31] DOI: 10.1512/iumj.1980.29.29031 · Zbl 0445.76023 · doi:10.1512/iumj.1980.29.29031
[32] DOI: 10.2307/2373250 · Zbl 0143.35301 · doi:10.2307/2373250
[33] Stein E. M., Singular Integrals and Differentiability Properties of Functions (1970) · Zbl 0207.13501
[34] DOI: 10.1017/S0022112000008880 · Zbl 1156.76419 · doi:10.1017/S0022112000008880
[35] DOI: 10.1007/978-1-4612-4838-5 · doi:10.1007/978-1-4612-4838-5
[36] DOI: 10.1007/978-1-4612-4566-7 · doi:10.1007/978-1-4612-4566-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.