Zhou, Gang Perturbation expansion and \(N\)th order Fermi golden rule of the nonlinear Schrödinger equations. (English) Zbl 1144.81430 J. Math. Phys. 48, No. 5, 053509, 23 p. (2007). Summary: In this paper we consider generalized nonlinear Schrödinger equations with external potentials. we compute the forth and the sixed order Fermi Golden Rules (FGR), conjectured in our previous papers, which is used in a study of the asymptotic dynamics of trapped solitons. Cited in 7 Documents MSC: 47N50 Applications of operator theory in the physical sciences 35Q55 NLS equations (nonlinear Schrödinger equations) 81Q15 Perturbation theories for operators and differential equations in quantum theory PDF BibTeX XML Cite \textit{G. Zhou}, J. Math. Phys. 48, No. 5, 053509, 23 p. (2007; Zbl 1144.81430) Full Text: DOI References: [1] Ambrosetti A., Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. Lincei, Mat. Appl. 7 pp 155– (1996) [2] Buslaev V. S., St. Petersbg. Math. J. 4 pp 1111– (1993) [3] DOI: 10.1007/BF02364705 · Zbl 0836.35146 [4] DOI: 10.1016/S0294-1449(02)00018-5 · Zbl 1028.35139 [5] Berestycki H., Arch. Ration. Mech. Anal. 82 pp 313– (1983) [6] Cazenave T., An Introduction to Nonlinear Schrödinger Equations (2003) · Zbl 1055.35003 [7] DOI: 10.1063/1.1901345 · Zbl 1110.35082 [8] DOI: 10.1002/cpa.20050 · Zbl 1064.35181 [9] DOI: 10.1002/cpa.1018 · Zbl 1031.35129 [10] DOI: 10.1098/rspa.1927.0039 · JFM 53.0847.01 [11] DOI: 10.1016/0022-1236(86)90096-0 · Zbl 0613.35076 [12] DOI: 10.1142/S0129055X05002522 · Zbl 1086.82013 [13] DOI: 10.1007/s00039-006-0587-2 · Zbl 1110.35084 [14] DOI: 10.1016/0022-1236(87)90044-9 · Zbl 0656.35122 [15] DOI: 10.1080/03605308808820585 · Zbl 0702.35228 [16] DOI: 10.1007/BF01218621 · Zbl 0693.35132 [17] DOI: 10.1007/BF02096645 · Zbl 0780.35106 [18] DOI: 10.2307/1970847 · Zbl 0252.47009 [19] DOI: 10.1007/BF01626517 · Zbl 0356.35028 [20] DOI: 10.1007/BF02096557 · Zbl 0721.35082 [21] DOI: 10.1016/0022-0396(92)90098-8 · Zbl 0795.35073 [22] DOI: 10.1142/S0129055X04002175 · Zbl 1111.81313 [23] DOI: 10.1007/s002220050303 · Zbl 0910.35107 [24] DOI: 10.1002/cpa.3012 · Zbl 1031.35137 [25] DOI: 10.1081/PDE-120016161 · Zbl 1021.35113 [26] DOI: 10.1155/S1073792802201063 · Zbl 1011.35120 [27] DOI: 10.1002/cpa.3160390103 · Zbl 0594.35005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.