Fredholm determinants and the statistics of charge transport. (English) Zbl 1144.82033

Summary: Using operator algebraic methods we show that the moment generating function of charge transport in a system with infinitely many non-interacting Fermions is given by a determinant of a certain operator in the one-particle Hilbert space. The formula is equivalent to a formula of Levitov and Lesovik in the finite dimensional case and may be viewed as its regularized form in general. Our result embodies two tenets often realized in mesoscopic physics, namely, that the transport properties are essentially independent of the length of the leads and of the depth of the Fermi sea.


82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
81U10 \(n\)-body potential quantum scattering theory
Full Text: DOI arXiv Link


[1] Araki H. (1987). Bogoliubov automorphisms and Fock representations of the canonical anticommutation relations. Contemp. Math. 62: 23–141 · Zbl 0614.46058
[2] Araki H. and Wyss W. (1964). Representations of canonical anticommutation relations. Helv. Phys. Acta 37: 136–159 · Zbl 0137.23903
[3] Avron J.E., Elgart A., Graf G.M., Sadun L. and Schnee K. (2004). Adiabatic charge pumping in open quantum systems. Comm. Pure Appl. Math. 57: 528–561 · Zbl 1038.81073
[4] Baumgärtel H., Jurke M. and Lledó F. (2002). Twisted duality of the CAR-algebra. J. Math. Phys. 43: 4158–4179 · Zbl 1060.46040
[5] Bratteli O. and Robinson D.W. (1979). Operator Algebras and Quantum Statistical Mechanics I. Berlin-Heidelberg-New York, Springer-Verlag · Zbl 0421.46048
[6] Büttiker M., Thomas H. and Prêtre A. (1994). Current partition in multi-probe conductors in the presence of slowly oscillating external potentials. Z. Phys. B 94: 133–137
[7] Doplicher S., Haag R. and Roberts J.E. (1969). Fields, observables and gauge transformations I. Commun. Math. Phys. 13: 1–23 · Zbl 0175.24704
[8] Ivanov D.A., Lee H.W. and Levitov L.S. (1997). Coherent states of alternating current. Phys. Rev. B 56: 6839–6850
[9] Jakšić V. and Pillet C.-A. (2002). Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108: 787–829 · Zbl 1025.82011
[10] Klich I. (2003). Full counting statistics: An elementary derivation of Levitov’s formula. In: Nazarov, Yu.V. and Blanter, Ya. M. (eds) Quantum Noise, pp. Kluwer, Dordrecht
[11] Levitov, L.S.: Counting statistics of charge pumping in open systems. http://arxiv.org/list/cond-mat/0103617 , 2001
[12] Levitov L.S., Lee H.W. and Lesovik G.B. (1996). Electron counting statistics and coherent states of electric current. J. Math. Phys. 37: 4845–4866 · Zbl 0868.60099
[13] Levitov L.S. and Lesovik G.B. (1993). Charge distribution in quantum shot noise. JETP Lett. 58: 230–235
[14] Lundberg L.-E. (1976). Quasi-free ’second quantization’. Commun. Math. Phys. 50: 103–112 · Zbl 0336.46062
[15] Muzykanskii B.A. and Adamov Y. (2003). Scattering approach to counting statistics in quantum pumps. Phys. Rev. B 68: 155304–155313
[16] Pilgram S. and Büttiker M. (2003). Statistics of charge fluctuations in chaotic cavities. Phys. Rev. B 67: 235308
[17] Powers R.T. and Størmer E. (1970). Free states of the canonical anticommutation relations. Commun. Math. Phys. 16: 1–33 · Zbl 0186.28301
[18] Reed, M., Simon, B.: Methods of Modern Mathematical Physics: IV, Analysis of Operators. New York: Academic Press, 1978 · Zbl 0401.47001
[19] De Roeck, W.: Large deviation generating function for energy transport in the Pauli-Fierz model. http://arxiv.org/abs/0704.3400v3 , 2007
[20] Ruijsenaars S.N.M. (1977). Charged particles in external fields. I. Classical theory. J. Math. Phys. 18: 720–737
[21] Schönhammer K. (2007). Full counting statistics for noninteracting fermions: Exact results and the Levitov-Lesovik formula. Phys. Rev. B 75: 205329
[22] Seiler E. (1975). Schwinger functions for the Yukawa model in two dimensions with space-time cutoff. Commun. Math. Phys. 42: 163–182
[23] Seiler R. (1972). Quantum theory of particles with spin zero and one half in external fields. Commun. Math. Phys. 25: 127–151
[24] Shale D. and Stinespring W.F. (1965). Spinor representations of infinite orthogonal groups. J. Math. Mech. 14: 315–322 · Zbl 0132.36003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.