zbMATH — the first resource for mathematics

Simulation of stochastic demand data streams for network revenue management problems. (English) Zbl 1144.90413
Summary: For evaluating heuristic and optimal network revenue management procedures test-instances are needed. As a consequence when trying to create instances for network revenue management problems it turns out that among other things a stream of stochastic demand data is required. But, developing and implementing a generator for demand data that fits to a given network, a given set of products, and a given set of capacity constraints is far from being easy. Since to the best of our knowledge no such demand data generator is available to the public, we specify an algorithm to generate this data and we also make this algorithm available upon request. This, we hope, facilitates future research work.

90B50 Management decision making, including multiple objectives
90B18 Communication networks in operations research
MRG32k3a; RngSteam
Full Text: DOI
[1] Barr RS, Golden BL, Kelly JP, Resende MGC, Stewart WR (1995) Designing and reporting on computational experiments with heuristic methods. J Heuristics 1:9–32 · Zbl 0853.68154 · doi:10.1007/BF02430363
[2] Beckmann MJ, Bobkoski F (1958) Airline demand: an analysis of some frequency distributions. Nav Res Logist Q 5:43–51 · doi:10.1002/nav.3800050105
[3] Belobaba PP (1989) Application of a probabilistic decision model to airline seat inventory control. Oper Res 37:183–197 · doi:10.1287/opre.37.2.183
[4] Bertsimas D, de Boer S (2005) Simulation-based booking limits for airline revenue management. Oper Res 53:90–106 · Zbl 1165.90557 · doi:10.1287/opre.1040.0164
[5] Bertsimas D, Popescu I (2003) Revenue management in a dynamic network environment. Transp Sci 37:257–277 · doi:10.1287/trsc.
[6] Bitran GR, Gilbert SM (1996) Managing hotel reservations with uncertain arrivals. Oper Res 44:35–49 · Zbl 0847.90094 · doi:10.1287/opre.44.1.35
[7] Bitran GR, Mondschein SV (1995) An application of yield management to the hotel industry considering multiple day stays. Oper Res 43:427–443 · Zbl 0839.90072 · doi:10.1287/opre.43.3.427
[8] Bratley P, Bennett L, Schrage LE (1987) A guide to simulation, 2nd edn., Springer, Berlin Heidelberg New York · Zbl 0515.68070
[9] Brumelle SL, McGill JI (1993) Airline seat allocation with multiple nested fare classes. Oper Res 41:127–137 · Zbl 0775.90148 · doi:10.1287/opre.41.1.127
[10] Chan LMA, Simchi Levi D, Swann J (2001) Dynamic pricing strategies for manufacturing with stochastic demand and discretionary sales. Working Paper, Georgia Institute of Technology
[11] Chen D (1998) Network Flows in Hotel Yield Management. Working Paper TR1225, Cornell University
[12] Coughlan J (1999) Airline overbooking in the multi–class case. J Oper Res Soc 50:1098–1103 · Zbl 1054.90562
[13] Curry RE (1990) Optimal airline seat allocation with fare classes nested by origins and destinations. Transp Sci 41:193–204 · doi:10.1287/trsc.24.3.193
[14] de Boer S, Freling R, Piersma N (2002) Mathematical programming for network revenue management revisited. Eur J Oper Res 137:72–92 · Zbl 1003.90056 · doi:10.1016/S0377-2217(01)00096-0
[15] DeGroot MH (1970) Optimal statistical decisions. McGraw-Hill, New York · Zbl 0225.62006
[16] Dror M, Trudeau P, Ladany SP (1988) Network models for seat allocation on flights. Transp Res 22B:239–250 · doi:10.1016/0191-2615(88)90001-X
[17] Elimam AA, Dodin BM (2001) Incentives and yield management in improving productivity of manufacturing facilities. IIE Trans 33:449–462
[18] Gallego G, van Ryzin G (1994) Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Manage Sci 40:999–1020 · Zbl 0816.90054 · doi:10.1287/mnsc.40.8.999
[19] Gallego G, van Ryzin G (1997) A multiproduct dynamic pricing problem with applications to network yield management. Oper Res 45:24–41 · Zbl 0889.90052 · doi:10.1287/opre.45.1.24
[20] Glover F, Glover R, Lorenzo J, McMillan C (1982) The passenger mix problem in the scheduled airlines. Interfaces 12:73–79 · doi:10.1287/inte.12.3.73
[21] Goldman P, Freling R, Pak K, Piersma N (2001) Models and techniques for hotel revenue management using a rolling horizon. Working Paper, Erasmus University, Rotterdam
[22] Grandell J (1997) Mixed Poisson processes. Chapman and Hall, London · Zbl 0922.60005
[23] Günther DP, Chen VCP, Johnson EL (1999) Yield management: optimal bid prices for single-hub problems without cancellations. Working Paper, Georgia Institute of Technology
[24] Hersh M, Ladany SP (1978) Optimal seat allocation for flights with one intermediate stop. Comput Oper Res 5:31–37 · doi:10.1016/0305-0548(78)90015-1
[25] Kimms A, Klein R (2005) Revenue Management im Branchenvergleich. Z Betr wirtsch Erg h 1:1–30
[26] Klein R (2004) Private communication as having been supervisor of Miklitz (2003)
[27] Knuth DE (1998) The art of computer programming: 2. Seminumerical algorithms, 3rd edn., Addison–Wesley, Boston · Zbl 0895.65001
[28] Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource–constrained project scheduling problems. Manage Sci 41:1693–1703 · Zbl 0870.90070 · doi:10.1287/mnsc.41.10.1693
[29] Ladany SP (1976) Dynamic operating rules for motel reservations. Decis Sci 7:829–840 · doi:10.1111/j.1540-5915.1976.tb00722.x
[30] Ladany SP (2001) Optimal hotel segmentation mix strategy. Int J Serv Technol Manag 2:18–27 · Zbl 05464093 · doi:10.1504/IJSTM.2001.001588
[31] Ladany SP, Arbel A (1991) Optimal cruise–liner passenger cabin pricing policy. Eur J Oper Res 55:136–147 · Zbl 0729.90994 · doi:10.1016/0377-2217(91)90219-L
[32] Ladany SP, Bedi DN (1977) Dynamic booking rules for flights with an intermediate stop. Omega 5:721–730 · doi:10.1016/0305-0483(77)90052-4
[33] Ladany SP, Chou FS (2001) Optimal yield policy with infiltration consideration. Int J Serv Technol Manag 2:4–17 · Zbl 05464082 · doi:10.1504/IJSTM.2001.001587
[34] Lautenbacher CJ, Stidham S (1999) The underlying Markov decision process in the single-leg airline yield–management problem. Transp Sci 33:136–146 · Zbl 1003.90022 · doi:10.1287/trsc.33.2.136
[35] Law AM, Kelton WD (2000) Simulation modelling and analysis, 3rd edn., McGraw-Hill, Boston
[36] L’Ecuyer P (1999) Good parameters and implementations for combined multiple recursive random number generators Oper Res 47:159–164 · Zbl 1042.65505 · doi:10.1287/opre.47.1.159
[37] L’Ecuyer P, Simard R, Chen EJ, Kelton WD (2002) An object–oriented random–number package with many long streams and substreams. Oper Res 50:1073–1075 · doi:10.1287/opre.50.6.1073.358
[38] Lee AO (1990) Airline reservations forecasting: probabilistic and statistical models of the booking Process. Ph.D. dissertation, MIT
[39] Lee TC, Hersh M (1993) A model for dynamic airline seat inventory control with multiple seat bookings. Transp Sci 27:252–265 · doi:10.1287/trsc.27.3.252
[40] Lewis PAW, Shedler GS (1979) Simulation of nonhomogeneous Poisson processes by thinning. Nav Res Logist Q 26:403–413 · Zbl 0497.60003 · doi:10.1002/nav.3800260304
[41] Littlewood K (1972) Forecasting and control of passenger bookings. AGIFORS Symposium Proceedings.
[42] Lyle C (1970) A statistical analysis of the variability in aircraft occupancy. AGIFORS Symposium Proceedings
[43] Marsaglia G, Tsang WW (2000) A simple method for generating gamma variables. ACM Trans Math Softw 26:363–372 · Zbl 1365.65022 · doi:10.1145/358407.358414
[44] Metters R, Vargas V (1999) Yield management for the nonprofit sector. J Serv Res 1:215–226 · doi:10.1177/109467059913003
[45] Miklitz T (2003) Preis–Mengen–Steuerung im Revenue Management. Diploma Thesis, Technical University Darmstadt
[46] Pak K, Dekker R (2004) Cargo revenue management: bid-prices for a 0–1 multi Knapsack problem. Working Paper, Erasmus University Rotterdam
[47] Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1993) Numerical recipes in C–the art of scientific computing, 2nd edn., Cambridge University Press, Cambridge
[48] Pugh GR (2004) An analysis of the Lanczos Gamma Approximation. Ph.D. Thesis, University of British Columbia
[49] Richter H (1982) The differential revenue method to determine optimal seat allotments by fare type. AGIFORS Symposium Proceedings
[50] Robinson LW (1995) Optimal and approximate control policies for airline booking with sequential nonmonotonic fare classes. Oper Res 43:252–263 · Zbl 0832.90072 · doi:10.1287/opre.43.2.252
[51] Ross SM (2000) Introduction to probability models. 7th edn., San Diego, Harcourt · Zbl 0977.60001
[52] Rothstein M (1971) An airline overbooking model. Transp Sci 5:180–192 · doi:10.1287/trsc.5.2.180
[53] Stuart A, Ord JK (1987) Kendall’s advanced theory of statistics. 1: Distribution theory, 5th edn., Charles Griffin & Co., London · Zbl 0621.62001
[54] Subramanian J, Stidham SJ, Lautenbacher CJ (1999) Airline yield management with overbooking, cancellations, and no–shows. Transp Sci 33:147–167 · Zbl 1002.90034 · doi:10.1287/trsc.33.2.147
[55] Swan WM (2002) Airline demand distributions: passenger revenue management and spill. Transp Res 38E:253–263
[56] Talluri KT, van Ryzin GJ (1998) An analysis of bid–price controls for network revenue management. Manage Sci 44:1577–1593 · Zbl 1004.90042 · doi:10.1287/mnsc.44.11.1577
[57] Talluri KT, van Ryzin GJ (1999) A randomized linear programming method for computing network bid prices. Transp Sci 33:207–216 · Zbl 1002.90506 · doi:10.1287/trsc.33.2.207
[58] Talluri KT, van Ryzin GJ (2004) The theory and practice of revenue management. Boston, Kluwer · Zbl 1083.90024
[59] van Ryzin GJ, McGill J (2000) Revenue management without forecasting or optimization: an adaptive algorithm for determining seat protection levels. Manage Sci 42:760–775 · Zbl 1231.90414
[60] Weatherford LR, Bodily SE, Pfeiffer PE (1993) Modelling the customer arrival process and comparing decision rules in perishable asset revenue management situations. Transp Sci 27:239–251 · doi:10.1287/trsc.27.3.239
[61] Wollmer RD (1992) An airline seat management model for a single leg route when lower fare classes book first. Oper Res 40:26–37 · Zbl 0825.90664 · doi:10.1287/opre.40.1.26
[62] You P-S (2003) Dynamic pricing of inventory with cancellation demand. J Oper Res Soc 54:1093–1101 · Zbl 1095.91503 · doi:10.1057/palgrave.jors.2601619
[63] Zhao W, Zheng YS (1998) Optimal dynamic capacity allocation with multi–class nonstationary demand. Working Paper, Wharton School
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.