zbMATH — the first resource for mathematics

Adaptive feedback controller for projective synchronization. (English) Zbl 1144.93364
Summary: Due to the unpredictability of the scaling factor of projective synchronization in coupled partially linear systems, it is hard to know for sure the terminal state of the synchronized dynamics. In this paper, a simple adaptive linear feedback control method is proposed for controlling the scaling factor onto a desired value, based on the invariance principle of differential equations. Firstly, we prove the synchronizability of the proposed simple adaptive projective synchronization control method from the viewpoint of mathematics. Then, two numerical examples are presented to illustrate the applications of the derived results. Finally, we propose a communication scheme based on the adaptive projective synchronization of the Lorenz chaotic system. Numerical simulation shows its feasibility.

93D21 Adaptive or robust stabilization
37N35 Dynamical systems in control
93C40 Adaptive control/observation systems
94A62 Authentication, digital signatures and secret sharing
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI
[1] Agiza, H.N., Chaos synchronization of Lü dynamical system, Nonlinear anal., 58, 11-20, (2004) · Zbl 1057.34042
[2] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.L.; Zhou, C.S., The synchronization of chaotic systems, Phys. report, 366, 1-101, (2002) · Zbl 0995.37022
[3] Cao, J.; Lu, J., Adaptive synchronization of neural networks with or without time-varing delay, Chaos, 16, 013133, (2006) · Zbl 1144.37331
[4] Chen, A.; Lu, J.; Lü, J.; Yu, S., Generating hyperchaotic Lü attractor via state feedback control, Phys. A, 364, 103-110, (2006)
[5] F.X. Chen, W.D. Zhang, LMI criteria for robust chaos synchronization of a class of chaotic systems. Nonlinear Anal., in press. · Zbl 1131.34038
[6] Chen, G.; Dong, X., From chaos to order: perspective, methodologies and applications, (1998), World Scientific Singapore
[7] Chen, M.; Zhou, D., Synchronization in uncertain complex networks, Chaos, 16, 013101, (2006) · Zbl 1144.37338
[8] Y. Chen, X.X. Chen, S.S. Gu, Lag synchronization of structurally nonequivalent chaotic systems with time delays, Nonlinear Anal. 66 (2007) 1929-1937. · Zbl 1123.34336
[9] Feng, C.; Zhang, Y.; Wang, Y., Projective synchronization in time-delayed chaotic systems, Chinese phys. lett., 23, 1418-1421, (2006)
[10] Hu, M.F.; Xu, Z.Y.; Zhang, R.; Hu, A.H., Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems, Phys. lett. A, 361, 231-237, (2007) · Zbl 1170.93365
[11] Huang, D., Stabilizing near-nonhyperbolic chaotic systems with applications, Phys. rev. lett., 93, 214101, (2004)
[12] Huang, D., Simple adaptive-feedback controller for identical chaos synchronization, Phys. rev. E, 71, 037203, (2005)
[13] Huang, D., Adaptive-feedback control algorithm, Phys. rev. E, 73, 066204, (2006) · Zbl 1244.93064
[14] Kilic, R., Experimental study on impulsive synchronization between two modified chuas circuits, Nonlinear anal: real world appl., 7, 5, 1298-1303, (2006) · Zbl 1130.37359
[15] Li, C.G., Projective synchronization in fractional order chaotic systems and its control, Prog. theor. phys., 115, 661-666, (2006)
[16] Li, G.H.; Zhou, S.P.; Yang, K., Generalized projective synchronization between two different chaotic systems using active backstepping control, Phys. lett. A, 355, 326-330, (2006)
[17] Li, Z.; Xu, D., Stability criterion for projective synchronization in three-dimensional chaotic systems, Phys. lett. A, 282, 175-179, (2001) · Zbl 0983.37036
[18] Liu, J.; Chen, S.H.; Lu, J.A., Projective synchronization in a unified chaotic system and its control, Acta phys. sin, 52, 1595-1599, (2003)
[19] Liu, Y.W.; Ge, G.M.; Zhao, H.; Wang, Y.H., Synchronization of hyperchaotic harmonics in time-delay systems and its application to secure communication, Phys. rev. E, 62, 7898-7904, (2000)
[20] Lu, J.A.; Wu, X.Q.; Lü, J.H., Synchronization of unified chaotic system and the application in secure communication, Phys. lett. A, 305, 365-370, (2002) · Zbl 1005.37012
[21] Mainieri, R.; Rehacek, J., Projective synchronization in three-dimensional chaotic systems, Phys. rev. lett., 82, 3042-3045, (1999)
[22] A.N. Milioua, I.P. Antoniadesa, S.G. Stavrinides, A.N. Anagnostopoulos, Secure communication by chaotic synchronization: Robustness under noisy conditions, Nonlinear Anal: Real World Appl. 8 (2007) 1003-1012. · Zbl 1187.94007
[23] Perora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys. rev. lett., 64, 821-825, (1990)
[24] Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J., Phase synchronization of chaotic oscillators, Phys. rev. lett., 76, 1804-1807, (1996)
[25] Rulkov, N.F.; Sushchik, M.M.; Tsimring, L.S., Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. rev. E, 51, 980-994, (1995)
[26] Taherion, S.; Lai, Y.C., Observability of lag synchronization of coupled chaotic oscillators, Phys. rev. E, 59, 6247-6250, (1999)
[27] Wang, B.; Bu, S., Controlling the ultimate state of projective synchronization in chaos: application to chaotic encryption, Int. J. mod. phys. B, 18, 2415-2421, (2004)
[28] Xu, D., Control of projective synchronization in chaotic systems, Phys. rev. E, 63, 27201-27204, (2001)
[29] Xu, D.; Chee, C.Y., Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension, Phys. rev. E, 66, 046218, (2002)
[30] Xu, D.; Li, Z., Controlled projective synchronization in nonpartially-linear chaotic systems, Int. J. bifurcation and chaos, 12, 1395-1402, (2002)
[31] Xu, D.; Li, Z.; Bishop, R., Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems, Chaos, 11, 3, 439-442, (2001) · Zbl 0996.37075
[32] Xu, D.; Ong, W.L.; Li, Z., Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension, Phys. lett. A, 305, 167-172, (2002) · Zbl 1001.37026
[33] Zou, Y.L.; Zhu, J., Controlling projective synchronization in coupled chaotic systems, Chin. phys., 15, 9, 1965-1970, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.