×

An \(L^{p}\)-\(L^{q}\)-version of Morgan’s theorem for the \(n\)-dimensional Euclidean motion group. (English) Zbl 1145.43009

The \(n\)-dimensional Euclidean motion group \(M(n), n \geq 2,\) is the semidirect product of \({\mathbb R}^n\) with \(K = SO(n)\). The Haar measure of \(M(n)\) is \(dx\,dk\), where \(dx\) is the Lebesgue measure on \({\mathbb R}^n\) and \(dk\) is the normalized Haar measure on \(K\). Denote by \(\widehat{M}(n)\) the unitary dual of \(M(n)\). A description is given of the infinite-dimensional elements of \(\widehat{M}(n)\) that are sufficient for the Plancherel theorem. Let \(\mu\) be the Plancherel measure on \(\widehat{M}(n)\). The support of \(\mu\) is parametrized by \((r, \lambda) \in ] 0, \infty [ \times \widehat{U}\), where \(U = SO(n-1)\) is the subgroup of \(SO(n)\) leaving fixed \(\varepsilon_n = (0, \dots, 0, 1)\) in \({\mathbb R}^n\). For \(f \in L^1( M(n)) \cap L^2(M(n)), \pi_{r, \lambda} (f)\) is a Hilbert-Schmidt operator on the Hilbert space \(H_{\lambda}\). Moreover, the restriction of \(\mu\) on the part \(] 0, \infty [ \times \{ \lambda \}\) is given, up to a constant depending only on \(n\), by \(r^{n-1} dr\). Set \(\hat{f} (r, \lambda) = \pi_{r, \lambda}(f)\). The main result of the paper is the following: Let \(p, q \in [1, \infty], a,b \in ] 0, \infty [\), and \(\alpha, \beta\) positive real numbers satisfying \(\alpha >2\) and \(1/\alpha + 1/\beta =1.\) Suppose that \(f\) is a measurable function on \(M(n)\) satisfying
1)
\(e^{a\parallel x \parallel^{\alpha}} f(x,k) \in L^p(M(n)),\)
2)
\(e^{br^{\beta}} \parallel \hat{f}(r, \lambda) \parallel_{HS} \in L^q( {\mathbb R}^+, r^{n-1} dr)\) for all fixed \(\lambda\) in \(\widehat{U}\).
If \((a \alpha)^{1/\alpha} (b \beta)^{1/ \beta} > (\sin(\pi/2)(\beta -1))^{1/\beta}\), then \(f = 0\) a.e. The authors conclude the paper by showing that the above inequality is sharp.

MSC:

43A80 Analysis on other specific Lie groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. H. Hardy, “A theorem concerning Fourier transforms,” Journal of the London Mathematical Society, vol. 8, pp. 227-231, 1933. · Zbl 0007.30403 · doi:10.1112/jlms/s1-8.3.227
[2] G. W. Morgan, “A note on Fourier transforms,” Journal of the London Mathematical Society, vol. 9, pp. 187-192, 1934. · Zbl 0009.24801 · doi:10.1112/jlms/s1-9.3.187
[3] A. Beurling, The Collected Works of Arne Beurling. Vol. 1, Contemporary Mathematicians, Birkhäuser, Boston, Mass, USA, 1989. · Zbl 0732.01042
[4] A. Beurling, The Collected Works of Arne Beurling. Vol. 2, Contemporary Mathematicians, Birkhäuser, Boston, Mass, USA, 1989. · Zbl 0732.01042
[5] L. Hörmander, “A uniqueness theorem of Beurling for Fourier transform pairs,” Arkiv för Matematik, vol. 29, no. 2, pp. 237-240, 1991. · Zbl 0755.42009 · doi:10.1007/BF02384339
[6] S. C. Bagchi and S. K. Ray, “Uncertainty principles like Hardy/s theorem on some Lie groups,” Journal of the Australian Mathematical Society. Series A, vol. 65, no. 3, pp. 289-302, 1998. · Zbl 0930.22009
[7] S. Ben Farah and K. Mokni, “Uncertainty principle and the Lp-Lq-version of Morgan/s theorem on some groups,” Russian Journal of Mathematical Physics, vol. 10, no. 3, pp. 245-260, 2003. · Zbl 1039.43011
[8] L. Gallardo and K. Trimèche, “Un analogue d/un théorème de Hardy pour la transformation de Dunkl,” Comptes Rendus Mathématique. Académie des Sciences. Paris, vol. 334, no. 10, pp. 849-854, 2002. · Zbl 0999.43003 · doi:10.1016/S1631-073X(02)02361-0
[9] E. K. Narayanan and S. K. Ray, “Lp version of Hardy/s theorem on semi-simple Lie groups,” Proceedings of the American Mathematical Society, vol. 130, no. 6, pp. 1859-1866, 2002. · Zbl 0996.43005 · doi:10.1090/S0002-9939-02-06272-X
[10] A. Bonami, B. Demange, and P. Jaming, “Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms,” Revista Matemática Iberoamericana, vol. 19, no. 1, pp. 23-55, 2003. · Zbl 1037.42010 · doi:10.4171/RMI/337
[11] M. Cowling and J. F. Price, “Generalisations of Heisenberg/s inequality,” in Harmonic Analysis (Cortona, 1982), vol. 992 of Lecture Notes in Math., pp. 443-449, Springer, Berlin, Germany, 1983. · Zbl 0516.43002
[12] R. P. Sarkar and S. Thangavelu, “On theorems of Beurling and Hardy for the Euclidean motion group,” The Tohoku Mathematical Journal. Second Series, vol. 57, no. 3, pp. 335-351, 2005. · Zbl 1085.22004 · doi:10.2748/tmj/1128703001
[13] G. B. Folland, A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995. · Zbl 0857.43001
[14] K. I. Gross and R. A. Kunze, “Fourier decompositions of certain representations,” in Symmetric Spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969-1970), W. M. Boothby and G. L. Weiss, Eds., pp. 119-139, Dekker, New York, NY, USA, 1972. · Zbl 0268.43010
[15] M. Sugiura, “Unitary Representations and Harmonic Analysis. An Introduction,” Kodansha, Tokyo, Japan, 1975. · Zbl 0344.22001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.