×

zbMATH — the first resource for mathematics

A concept of convergence in geodesic spaces. (English) Zbl 1145.54041
In the present paper, a CAT(0) space is a geodesic space for which each geodesic triangle is at least as ‘thin’ as its comparison triangle in the Euclidean plane. A notion of convergence introduced independently by T.-C. Lim [Proc. Am. Math. Soc. 60, 179–182 (1976; Zbl 0346.47046)] and T. Kuczumow [Ann. Univ. Mariae Curie-Skłodowska, Sect. A 32, 79–88 (1978; Zbl 0463.47035)] is shown in CAT(0) spaces to be very similar to the usual weak convergence in Banach spaces. In particular, many Banach space results involving weak convergence have precise analogues in this setting. The paper ends with several open questions.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
05C05 Trees
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bridson, M.; Haefliger, A., Metric spaces of non-positive curvature, (1999), Springer-Verlag Berlin, Heidelberg · Zbl 0988.53001
[2] Burago, D.; Burago, Y.; Ivanov, S., ()
[3] Bruck, R.E., A simple proof of the Mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. math., 32, 107-116, (1979) · Zbl 0423.47024
[4] Dhompongsa, S.; Kirk, W.A.; Panyanak, B., Nonexpansive set-valued mappings in metric and Banach spaces, J. nonlinear convex anal., 8, 35-45, (2007) · Zbl 1120.47043
[5] Dhompongsa, S.; Kirk, W.A.; Sims, B., Fixed points of uniformly Lipschitzian mappings, Nonlinear anal., 65, 762-772, (2006) · Zbl 1105.47050
[6] García-Falset, J.; Llorens-Fuster, E.; Prus, S., The fixed point property for mappings admitting a center, Nonlinear anal., 66, 1257-1274, (2007) · Zbl 1118.47043
[7] García-Falset, J.; Llorens-Fuster, E.; Sims, B., Fixed point theory for almost convex function, Nonlinear anal., 32, 601-608, (1998) · Zbl 0934.47034
[8] Goebel, K.; Kirk, W.A., Topics in metric fixed point theory, (1990), Cambridge Univ. Press Cambridge · Zbl 0708.47031
[9] Goebel, K.; Reich, S., Uniform convexity, hyperbolic geometry, and nonexpansive mappings, (1984), Marcel Dekker, Inc. New York · Zbl 0537.46001
[10] Khamsi, M.A., La propiété du point fixe dans LES espaces de Banach avec base inconditionelle, Math. ann., 277, 727-734, (1987) · Zbl 0611.46018
[11] Kirk, W.A., Nonexpansive mappings in metric and Banach spaces, Rend. sem. mat. fis. milano, 51, 133-144, (1981) · Zbl 0519.54029
[12] Kirk, W.A., Geodesic geometry and fixed point theory, (), 195-225 · Zbl 1058.53061
[13] Kirk, W.A.; Massa, S., Remarks on asymptotic and Chebyshev centers, Houston J. math., 16, 357-363, (1990) · Zbl 0729.47053
[14] Kirk, W.A.; Sims, B., An ultrafilter approach to locally almost nonexpansive maps, Nonlinear anal., 63, e1241-e1251, (2005) · Zbl 1225.47063
[15] Kuczumow, T., An almost convergence and its applications, Ann. univ. mariae Curie-skłodowska sect. A, 32, 79-88, (1978), (1980) · Zbl 0463.47035
[16] Lim, T.C., Remarks on some fixed point theorems, Proc. amer. math. soc., 60, 179-182, (1976) · Zbl 0346.47046
[17] Nussbaum, R., Degree theory for local condensing mappings, J. math. anal. appl., 37, 741-766, (1972) · Zbl 0232.47062
[18] Reich, S., Fixed points of condensing functions, J. math. anal. appl., 41, 460-467, (1973) · Zbl 0252.47062
[19] Reich, S.; Shafrir, I., Nonexpansive iterations in hyperbolic space, Nonlinear anal., 15, 537-558, (1990) · Zbl 0728.47043
[20] Sims, B.; Xu, H.K., Locally almost nonexpansive mappings, Comm. appl. nonlinear anal., 8, 3, 81-88, (2001) · Zbl 1014.47027
[21] Sosov, E.N., On analogues of weak convergence in a special metric space, Izv. vyssh. uchebn. zaved. mat., 5, 84-89, (2004), Translation in Russian Math. (Iz. VUZ) 48 (5) (2004) 79-83 (in Russian) · Zbl 1090.54501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.