×

Reliable approaches of variational iteration method for nonlinear operators. (English) Zbl 1145.65314

Summary: In this paper, new approaches of the variational iteration method are developed to handle nonlinear problems. The proposed approaches are capable of reducing the size of calculations and easily overcome the difficulty arising in calculating complicated integrals. Numerical examples are examined to show the efficiency of the techniques. The modified approaches show improvements over the existing numerical schemes.

MSC:

65H05 Numerical computation of solutions to single equations
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] He, J.H., Variational iteration method for delay differential equations, Commun. nonlinear sci. numer. simul., 2, 4, 235-236, (1997)
[2] He, J.H., Semi-inverse method of establishing generalized principles for fluid mechanics with emphasis on turbomachinery aerodynamics, Int. J. turbo jet-engines, 14, 1, 23-28, (1997)
[3] He, J.H., Approximate solution of non linear differential equations with convolution product nonlinearities, Comput. methods appl. mech. engrg., 167, 69-73, (1998) · Zbl 0932.65143
[4] He, J.H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. methods appl. mech. engrg., 167, 57-68, (1998) · Zbl 0942.76077
[5] He, J.H., Variational iteration method- a kind of non-linear analytical technique: some examples, Internat. J. non-linear mech., 34, 699-708, (1999) · Zbl 1342.34005
[6] He, J.H., Variational iteration method for autonomous ordinary differential systems, Appl. math. comput., 114, 115-123, (2000) · Zbl 1027.34009
[7] He, J.H., Variational theory for linear magneto-electro-elasticity, Int. J. nonlinear sci. numer. simul., 2, 4, 309-316, (2001) · Zbl 1083.74526
[8] He, J.H., Variational principle for nano thin film lubrication, Int. J. nonlinear sci. numer. simul., 4, 3, 313-314, (2003)
[9] He, J.H., Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos solitons fractals, 19, 4, 847-851, (2004) · Zbl 1135.35303
[10] Hao, T.H., Search for variational principles in electrodynamics by Lagrange method, Int. J. nonlinear sci. numer. simul., 6, 2, 209-210, (2005)
[11] Momani, S.; Abuasad, S., Application of he’s variational iteration method to Helmholtz equation, Chaos solitons fractals, 27, 5, 1119-1123, (2006) · Zbl 1086.65113
[12] Odibat, Z.; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. nonlinear sci. numer. simul., 1, 7, 15-27, (2006)
[13] Momani, S.; Odibat, Z., Numerical comparison of methods for solving linear differential equations of fractional order, Chaos solitons fractals, 31, 1248-1255, (2007) · Zbl 1137.65450
[14] Odibat, Z.; Momani, S., Numerical methods for nonlinear partial differential equations of fractional order, Appl. math. model., 32, 1, 28-39, (2008) · Zbl 1133.65116
[15] He, J.H.; Wu, Xu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos solitons fractals, 29, 108-113, (2006) · Zbl 1147.35338
[16] He, J.H., Variational iteration method-some recent results and new interpretations, J. comput. appl. math., 207, 1, 3-17, (2007) · Zbl 1119.65049
[17] Mohghani, M.; Hejazi, F., Variational iteration method for solving generalized burger – fisher and burger equations, Chaos solitons fractals, 33, 1756-1761, (2007) · Zbl 1138.35398
[18] Abdou, M., On the variational iteration method, Phys. lett. A, 366, 61-68, (2007) · Zbl 1203.65205
[19] Wazwaz, A.M., The variational iteration method for exact solutions of Laplace equation, Phys. lett. A, 363, 260-262, (2007) · Zbl 1197.65204
[20] A.M. Wazwaz, The variational iteration method: A reliable tool for solving linear and nonlinear wave equations, Comput. Math. Appl. (in press) · Zbl 1141.65388
[21] A.M. Wazwaz, The variational iteration method for solving linear and nonlinear systems of PDEs, Comput. Math. Appl. (in press) · Zbl 1145.35312
[22] Tatari, M.; Dehghan, M., On the convergence of he’s variational iteration method, J. comput. appl. math., 207, 1, 121-128, (2007) · Zbl 1120.65112
[23] S. Li Mei, S. Zhang, Coupling technique of variational iteration and homotopy perturbation methods for nonlinear matrix differential equations, Comput. Math. Appl. (in press) · Zbl 1267.65102
[24] B. Batiha, M. Noorani, I. Hashim, Numerical solutions of sine-Gordon equation by variational iteration method, Phys. Lett. A (in press) · Zbl 1209.65105
[25] N. Sweilam, R. Al-Bar, Variational iteration method for coupled nonlinear Schrodinger equations, Comput. Math. Appl. (in press) · Zbl 1141.65387
[26] Batiha, B.; Noorani, M.; Hashim, I., Numerical simulation of the generalized Huxley equation by hes variational iteration method, Appl. math. comput., 186, 2, 1322-1325, (2007) · Zbl 1118.65367
[27] B. Batiha, M. Noorani, I. Hashim, Variational iteration method for solving multispecies LotkaVolterra equations, Comput. Math. Appl. (in press) · Zbl 1141.65370
[28] Batiha, B.; Noorani, M.; Hashim, I., Application of variational iteration method to heat- and wave-like equations, Phys. lett. A, 369, 1-2, 55-61, (2007) · Zbl 1209.80040
[29] B. Batiha, M. Noorani, I. Hashim, Application of variational iteration method to the generalized BurgersHuxley equation, Chaos Solitons Fractals (in press) · Zbl 1141.49006
[30] Wazwaz, A.M., A reliable modification of Adomian decomposition method, Appl. math. comput., 102, 1, 77-86, (1999) · Zbl 0928.65083
[31] Wazwaz, A.M.; El-Sayed, S.M., A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. math. comput., 122, 3, 393-405, (2001) · Zbl 1027.35008
[32] Odibat, Z., A new modification of the homotopy perturbation method for linear and nonlinear operators, Appl. math. comput., 189, 1, 746-753, (2007) · Zbl 1122.65092
[33] Odibat, Z.; Momani, S., A reliable treatment of homotopy perturbation method for klein – gordon equations, Phys. lett. A, 365, 5-6, 351-357, (2007) · Zbl 1203.65213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.