×

The Dirac-Kerr-Newman electron. (English) Zbl 1145.83333

Summary: We discuss the relation between the Kerr-Newman spinning particle and the Dirac electron and show that the Dirac equation may be naturally incorporated into the Kerr-Schild formalism as a master equation controlling the Kerr-Newman geometry. As a result, the Dirac electron acquires an extended space-time structure of the Kerr-Newman geometry: a singular ring of Compton size and a twistorial polarization of the gravitational and electromagnetic fields. The behavior of this Dirac-Kerr-Newman system in weak and slowly changing electromagnetic fields is determined by the wave function of the Dirac equation and is indistinguishable from the behavior of the Dirac electron. The wave function of the Dirac equation plays, in this model, the role of an “order parameter” which controls the dynamics, spin polarization and the twistorial structure of space-time.

MSC:

83C57 Black holes
83C50 Electromagnetic fields in general relativity and gravitational theory
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963). · Zbl 0112.21904
[2] E. T. Newman, E. Couch, Chinnapared, A. Exton, A. Prakash, and R. Torrence, J. Math. Phys. 6, 918 (1965).
[3] B. Carter, Phys. Rev. 174, 1559 (1968). · Zbl 0167.56301
[4] W. Israel, Phys. Rev. D 2, 641 (1970). · Zbl 0197.26502
[5] G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys. 10, 1842 (1969).
[6] A. Ya. Burinskii, Sov. Phys. JETP 39, 193 (1974); Russ. Phys. J. 17, 1068 (1974).
[7] D. Ivanenko and A. Ya. Burinskii, Russ. Phys. J. 18, 721 (1975).
[8] A. Ya. Burinskii, Strings in the Kerr-Schild Metrics, in ”Problems of Theory of Gravitation and Elementary Particles,” (Moscow, Atomizdat 1980), issue 11, p. 47 (in Russian).
[9] D. Ivanenko and A. Ya. Burinskii, Russ. Phys. J. 21, 932 (1978).
[10] C. A. López, Phys. Rev. D 30, 313 (1984).
[11] R. B. Mann and M. S. Morris, Phys. Lett. A 181, 443 (1993).
[12] A. Ya. Burinskii, Phys. Lett. A 185, 441 (1994); Stringlike Structures in Complex Kerr Geometry, in Relativity Today, Ed. by R. P. Kerr and Z. Perjés (Akadémiai Kiadó, Budapest, 1994), p. 149. · Zbl 0941.83507
[13] A. Burinskii, Phys. Rev. D 68, 105004 (2003).
[14] A. Burinskii, Phys. Rev. D 70, 086006 (2004).
[15] A. Burinskii, Czech. J. Phys. 55, A261 (2005); hep-th/0412195, hep-th/0412065.
[16] H. I. Arcos and J. G. Pereira, Gen. Rel. Grav. 36, 2441 (2004). · Zbl 1065.83033
[17] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, 1982). · Zbl 0476.53017
[18] B. S. DeWitt, Phys. Rep. C 19, 295 (1975).
[19] A. Burinskii, Int. J. Geom. Meth. Mod. Phys. 4(3), 437 (2007); Grav. Cosmology 11, 301 (2005); hep-th/0506006. · Zbl 1144.83005
[20] J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton, New Jersey, 1983). · Zbl 0516.53060
[21] A. Burinskii, Phys. Rev. D 67, 124024 (2003); Clas. Quant. Gravity 20, 905 (2003).
[22] R. Penrose, J. Math. Phys. 8, 345 (1967). · Zbl 0163.22602
[23] D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of Einstein’s Field Equations (Cambridge Univ. Press, 1980). · Zbl 0449.53018
[24] E. T. Newman, J. Math. Phys. 14, 102 (1973); R. W. Lind and E. T. Newman, J. Math. Phys. 15, 1103 (1974).
[25] A. Burinskii and R. P. Kerr, Nonstationary Kerr Congruences, gr-qc/9501012.
[26] A. Burinskii and G. Magli, Phys. Rev. D 61, 044017 (2000).
[27] V. B. Berestetsky, E. M. Lifshitz, and L. P. Pitaevsky, Quantum Electrodynamics (Course of Theoretical Physics, 4) (Pergamon, Oxford, UK, 1982).
[28] R. P. Feynman, The Theory of Fundamental Processes (Benjamin, Inc., New York, 1961).
[29] R. P. Kerr and W. B. Willson, Gen. Rel. Grav. 10, 273 (1979). · Zbl 0426.53029
[30] A. Burinskii, Grav. Cosmology 8, 261 (2002).
[31] A. Burinskii, J. Phys. A: Math. Gen. 39, 6209 (2006). · Zbl 1101.83319
[32] A. Burinskii, E. Elizalde, S. R. Hildebrandt, and G. Magli, Phys. Rev. D 65, 064039 (2002); gr-qc/0109085.
[33] R. Tolman, Relativity, Thermodynamics and Cosmology (Clavendon, Oxford, 1969).
[34] M. Gürses and F. Gürsey, J. Math. Phys. 16, 2385 (1975).
[35] V. P. Frolov, M. A. Markov, and V. F. Mukhanov, Phys. Lett. B 216, 272 (1989); Phys. Rev. D 41, 383 (1990).
[36] A. Burinskii, E. Elisalde, S. Hildebrandt and G. Magli, Aligned Electromagnetic Excitations of a Black Hole and Their Impact on Its Quantum Horizon, ArXiv: 0705.3551 [hep-th].
[37] E. Witten, Comm. Math. Phys. 252, 189 (2004); hep-th/0312171. · Zbl 1105.81061
[38] V. P. Nair, Phys. Lett. B 214, 215 (1988).
[39] A. Burinskii, Grav. Cosmology 10, Nos. 1–2(37–38), 50 (2004); hep-th/0403212.
[40] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill Book Company, 1964), vol. 1.
[41] A. I. Akhiezer and V. B. Berestetsky, Quantum Electrodynamics (Nauka, Moscow, 1981) (in Russian). · Zbl 0084.45005
[42] A. Burinskii, Clas. Quant. Gravity 16, 3497 (1999). · Zbl 0939.83059
[43] J. Schwinger, Phys. Rev. 82, 664 (1951). · Zbl 0043.42201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.