zbMATH — the first resource for mathematics

Adaptive control for anti-synchronization of Chua’s chaotic system. (English) Zbl 1145.93366
Summary: We present a systematic design procedure to anti-synchronize Chua’s chaotic system based on back-stepping procedure. This approach needs only a single controller to realize anti-synchronization. Furthermore, an adaptive control method for anti-synchronization of uncertain Chua’s chaotic system is proposed. The suggested tool turns out to be globally and asymptotically stable, and can realize anti-synchronization and parameters identification simultaneously. Some simulation results are also included to visualize the effectiveness and the feasibility of the developed approaches.

93C40 Adaptive control/observation systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI
[1] Pecora, L.M.; Carroll, T.L., Phys. rev. lett., 64, 821, (1990)
[2] Ott, E.; Grebogi, C.; Yorke, J.A., Phys. rev. lett., 64, 1196, (1990)
[3] Chen, G.; Dong, X., From chaos to order: methodologies, perspectives and applications, (1998), World Scientific Singapore
[4] Fuh, C.C.; Tung, P.C., Phys. rev. lett., 75, 2952, (1995)
[5] Chen, G.; Dong, X., IEEE trans. circuits systems, 40, 591, (1993)
[6] Yu, X.; Song, Y., Int. J. bifur. chaos, 11, 1737, (2001)
[7] Yang, X.S., Appl. math. comput., 122, 71, (2001)
[8] Ho, M.C.; Hung, Y.C.; Chou, C.H., Phys. lett. A, 296, 43, (2002)
[9] Shahverdiev, E.M.; Sivaprakasam, S.; Shore, K.A., Phys. lett. A, 292, 320, (2002)
[10] Xu, D.L.; Li, Z., Int. J. bifur. chaos, 11, 439, (2001)
[11] Michael, G.R.; Arkady, S.P.; Jürgen, K., Phys. rev. lett., 78, 4193, (1997)
[12] Shinbrot, T.; Grebogi, C.; Ott, E.; Yorke, J.A., Nature, 363, 411, (1993)
[13] Kim, C.M.; Rim, S.H.; Key, W., Phys. lett. A, 320, 39, (2003)
[14] Chen, S.; Wang, F.; Wang, C.P., Chaos solitons fractals, 20, 235, (2004)
[15] Belykh, V.N.; Chua, L.O., Int. J. bifur. chaos, 2, 697, (1992)
[16] Hassan, K.K., Nonlinear systems, (1996), Prentice Hall New York · Zbl 0842.93033
[17] Wedekind, I.; Parlitz, U., Int. J. bifur. chaos, 11, 1141, (2001)
[18] D.A. Miller, K.L. Kowalski, A. Lozowski, in: Circuits and Systems, ISCAS ’99. Proceedings of the 1999 IEEE International Symposium, vol. 5, 1999, pp. 458-462
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.