×

zbMATH — the first resource for mathematics

Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control. (English) Zbl 1146.37316
Editorial remark: No review copy delivered

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s11071-004-3743-y
[2] DOI: 10.1115/1.3167616 · Zbl 0544.73052
[3] DOI: 10.1109/TIT.1967.1053992 · Zbl 0148.40507
[4] DOI: 10.1017/S0022112091002203 · Zbl 0721.76011
[5] Heaviside O., Electromagnetic Theory (1971)
[6] DOI: 10.1103/PhysRevLett.82.1136
[7] DOI: 10.1016/S0370-1573(02)00331-9 · Zbl 0999.82053
[8] DOI: 10.1016/0960-0779(95)00125-5 · Zbl 1080.26505
[9] DOI: 10.1016/0368-1874(71)80037-0
[10] DOI: 10.1142/9789812817747_0001
[11] Kenneth S. M., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) · Zbl 0789.26002
[12] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008
[13] DOI: 10.1109/TAC.1984.1103551 · Zbl 0532.93025
[14] DOI: 10.1103/PhysRevE.68.067203
[15] DOI: 10.1103/PhysRevE.68.067203
[16] DOI: 10.1103/PhysRevE.68.067203
[17] DOI: 10.1103/PhysRevE.68.067203
[18] DOI: 10.1103/PhysRevE.68.067203
[19] DOI: 10.1016/j.physa.2005.06.078
[20] DOI: 10.1016/j.physa.2005.06.078
[21] DOI: 10.1016/j.physa.2005.06.078
[22] DOI: 10.1002/cta.4490220404
[23] DOI: 10.1142/1997
[24] DOI: 10.1109/81.251829 · Zbl 0844.58063
[25] DOI: 10.1142/S0218127402004164 · Zbl 1044.37029
[26] DOI: 10.1142/5753 · Zbl 1089.68117
[27] DOI: 10.1016/j.chaos.2005.05.021 · Zbl 1085.65118
[28] DOI: 10.1016/j.chaos.2005.05.021 · Zbl 1085.65118
[29] DOI: 10.1016/j.chaos.2005.05.021 · Zbl 1085.65118
[30] DOI: 10.1016/j.chaos.2005.05.021 · Zbl 1085.65118
[31] DOI: 10.1016/j.chaos.2005.05.021 · Zbl 1085.65118
[32] DOI: 10.1016/j.automatica.2004.06.001 · Zbl 1162.93353
[33] DOI: 10.1109/TCSI.2005.854412
[34] DOI: 10.1142/S0218127406015179 · Zbl 1097.94038
[35] DOI: 10.1016/j.chaos.2005.04.079 · Zbl 1097.37020
[36] DOI: 10.1016/j.chaos.2005.04.079 · Zbl 1097.37020
[37] D. Matignon, in Computational Engineering in Systems and Application Multiconference, IMACS, IEEE-SMC, Lille, France, Vol. 2, p. 963 (1996).
[38] DOI: 10.1023/A:1016592219341 · Zbl 1009.65049
[39] DOI: 10.1016/j.chaos.2004.12.041 · Zbl 1112.34326
[40] DOI: 10.1007/s00521-004-0429-9 · Zbl 02224514
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.