Park, Choonkil Generalized Hyers-Ulam stability of quadratic functional equations: a fixed point approach. (English) Zbl 1146.39048 Fixed Point Theory Appl. 2008, Article ID 493751, 9 p. (2008). Summary: Using the fixed point method, we prove the generalized Hyers-Ulam stability of the quadratic functional equation \(f(2x+y)=4f(x)+f(y)+f(x+y) - f(x - y)\) in Banach spaces. Cited in 35 Documents MSC: 39B82 Stability, separation, extension, and related topics for functional equations 39B52 Functional equations for functions with more general domains and/or ranges PDF BibTeX XML Cite \textit{C. Park}, Fixed Point Theory Appl. 2008, Article ID 493751, 9 p. (2008; Zbl 1146.39048) Full Text: DOI EuDML References: [2] doi:10.1073/pnas.27.4.222 · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222 [4] doi:10.2307/2042795 · Zbl 0398.47040 · doi:10.2307/2042795 [5] doi:10.1006/jmaa.1994.1211 · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211 [7] doi:10.1007/BF02192660 · Zbl 0549.39006 · doi:10.1007/BF02192660 [9] doi:10.1016/S0022-247X(02)00387-6 · Zbl 1017.39010 · doi:10.1016/S0022-247X(02)00387-6 [12] doi:10.1006/jmaa.1998.5916 · Zbl 0928.39013 · doi:10.1006/jmaa.1998.5916 [13] doi:10.1007/s00574-006-0016-z · Zbl 1118.39015 · doi:10.1007/s00574-006-0016-z [15] doi:10.1155/2007/50175 · Zbl 1167.39018 · doi:10.1155/2007/50175 [16] doi:10.1016/j.jmaa.2005.09.027 · Zbl 1101.39020 · doi:10.1016/j.jmaa.2005.09.027 [17] doi:10.1006/jmaa.2000.7046 · Zbl 0964.39026 · doi:10.1006/jmaa.2000.7046 [19] doi:10.1155/S0161171296000324 · Zbl 0843.47036 · doi:10.1155/S0161171296000324 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.