×

zbMATH — the first resource for mathematics

Gap functions and existence of solutions for a system of vector equilibrium problems. (English) Zbl 1146.49005
Summary: In this paper, a gap function for a system of vector equilibrium problems is introduced and studied. Some necessary and sufficient conditions for the system of vector equilibrium problems are established. Characterizations of the solutions set for the system of vector equilibrium problems are also derived. Furthermore, some existence results of solutions for the system of vector equilibrium problems are proved.

MSC:
49J40 Variational inequalities
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994) · Zbl 0888.49007
[2] Schaible, S., Yao, J.C., Zeng, L.C.: A proximal method for pseudomonotone type variational-like inequalities. Taiwan. J. Math. 10, 497–513 (2006) · Zbl 1116.49004
[3] Zeng, L.C., Lin, L.J., Yao, J.C.: Auxiliary problem method for mixed variational-like inequalities. Taiwan. J. Math. 10, 515–529 (2006) · Zbl 1259.49010
[4] Chadli, O., Wong, N.C., Yao, J.C.: Equilibrium problems with applications to eigenvalue problems. J. Optim. Theory Appl. 117, 245–266 (2003) · Zbl 1141.49306 · doi:10.1023/A:1023627606067
[5] Flores-Bazán, F.: Existence theory for finite-dimensional pseudomonotone equilibrium problems. Acta Appl. Math. 77, 249–297 (2003) · Zbl 1053.90110 · doi:10.1023/A:1024971128483
[6] Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibrium Problems. Kluwer Academic, Dordrecht (2000) · Zbl 0952.00009
[7] Isac, G., Bulavski, V.A., Kalashnikov, V.V.: Complementarity, Equilibrium, Efficiency and Economics. Kluwer Academic, Dordrecht (2002)
[8] Giannessi, F.: Theorem of alternative, quadratic programs, and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.) Variational Inequality and Complementarity Problems, pp. 151–186. Wiley, Chichester (1980) · Zbl 0484.90081
[9] Ansari, Q.H., Schaible, S., Yao, J.C.: The system of generalized vector equilibrium problems with applications. J. Glob. Optim. 22, 3–16 (2002) · Zbl 1041.90069 · doi:10.1023/A:1013857924393
[10] Ansari, Q.H., Yao, J.C.: An existence result for generalized vector equilibrium problem. Appl. Math. Lett. 12, 53–56 (1999) · Zbl 1014.49008 · doi:10.1016/S0893-9659(99)00121-4
[11] Bianchi, M., Hadjisavvas, N., Schaible, S.: Vector equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92, 527–542 (1997) · Zbl 0878.49007 · doi:10.1023/A:1022603406244
[12] Ding, X.P., Yao, J.C., Lin, L.J.: Solutions of system of generalized vector quasi-equilibrium problems in locally G-convex uniform spaces. J. Math. Anal. Appl. 298, 398–410 (2004) · Zbl 1072.49005 · doi:10.1016/j.jmaa.2004.05.039
[13] Fang, Y.P., Huang, N.J.: Existence results for systems of strongly implicit vector variational inequalities. Acta Math. Hung. 103, 265–277 (2004) · Zbl 1060.49003 · doi:10.1023/B:AMHU.0000028828.52601.9e
[14] Fang, Y.P., Huang, N.J.: Vector equilibrium type problems with (S)+-conditions. Optimization 53, 269–279 (2004) · Zbl 1052.49009 · doi:10.1080/02331930410001712652
[15] Hadjisavvas, N., Schaible, S.: From scalar to vector equilibrium problems in the quasimonotone case. J. Optim. Theory Appl. 96, 297–309 (1998) · Zbl 0903.90141 · doi:10.1023/A:1022666014055
[16] Huang, N.J., Gao, C.J.: Some generalized vector variational inequalities and complementarity problems for multivalued mappings. Appl. Math. Lett. 16, 1003–1010 (2003) · Zbl 1041.49009 · doi:10.1016/S0893-9659(03)90087-5
[17] Huang, N.J., Li, J., Thompson, H.B.: Implicit vector equilibrium problems with applications. Math. Comput. Model. 37, 1343–1356 (2003) · Zbl 1080.90086 · doi:10.1016/S0895-7177(03)90045-8
[18] Li, J., Huang, N.J., Kim, J.K.: On implicit vector equilibrium problems. J. Math. Anal. Appl. 283, 501–512 (2003) · Zbl 1137.90715 · doi:10.1016/S0022-247X(03)00277-4
[19] Li, S.J., Teo, K.L., Yang, X.Q.: Generalized vector quasiequilibrium problems. Math. Methods Oper. Res. 61, 385–397 (2005) · Zbl 1114.90114 · doi:10.1007/s001860400412
[20] Ansari, Q.H., Scahible, S., Yao, J.C.: Vector quasivariational inequalities over product spaces. J. Global Optim. 32, 437–449 (2005) · Zbl 1097.49005 · doi:10.1007/s10898-003-2682-3
[21] Chadli, O., Yang, X.Q., Yao, J.C.: On generalized vector prevariational and prequasivariational inequalities. J. Math. Anal. Appl. 295, 392–403 (2004) · Zbl 1043.49006 · doi:10.1016/j.jmaa.2004.02.051
[22] Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria. Mathematical Theories. Kluwer Academic, Dordrecht (2000) · Zbl 0952.00009
[23] Tan, N.X., Tinh, P.N.: On the existence of equilibrium points of vector functions. Numer. Funct. Anal. Optim. 19, 141–156 (1998) · Zbl 0896.90161 · doi:10.1080/01630569808816820
[24] Ansari, Q.H., Oettli, W., Schläger, D.: A generalization of vector equilibria. Math. Methods Oper. Res. 46, 147–152 (1997) · Zbl 0889.90155 · doi:10.1007/BF01217687
[25] Fu, J.: Simultaneous vector variational inequalities and vector implicit complementarity problem. J. Optim. Theory Appl. 93, 141–151 (1997) · Zbl 0901.90169 · doi:10.1023/A:1022653918733
[26] Lee, G.M., Kim, D.S., Lee, B.S.: On noncooperative vector equilibrium. Indian J. Pure Appl. Math. 27, 735–739 (1996) · Zbl 0858.90141
[27] Zeng, L.C., Wong, N.C., Yao, J.C.: Convergence of hybrid steepest-descent methods for generalized variational inequalities. Acta Math. Sinica, Engl. Ser. 22, 1–12 (2006) · Zbl 1121.49012 · doi:10.1007/s10114-005-0608-3
[28] Konnov, I.V., Schaible, S., Yao, J.C.: Combined relaxation method for mixed equilibrium problems. J. Optim. Theory Appl. 126, 309–322 (2005) · Zbl 1110.49028 · doi:10.1007/s10957-005-4716-0
[29] Yang, X.Q., Yao, J.C.: Gap functions and existence of solutions to set-valued vector variational inequalities. J. Optim. Theory Appl. 115, 407–417 (2002) · Zbl 1027.49003 · doi:10.1023/A:1020844423345
[30] Mastroeni, G.: Gap functions for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003) · Zbl 1061.90112 · doi:10.1023/A:1026050425030
[31] Li, J., He, Z.Q.: Gap functions and existence of solutions to generalized vector variational inequalities. Appl. Math. Lett. 18, 989–1000 (2005) · Zbl 1079.49006 · doi:10.1016/j.aml.2004.06.029
[32] Yang, X.Q.: On the gap functions of prevariational inequalities. J. Optim. Theory Appl. 116, 437–452 (2003) · Zbl 1027.49004 · doi:10.1023/A:1022422407705
[33] Chen, G.Y., Yang, X.Q., Yu, H.: A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. Glob. Optim. 32, 451–466 (2005) · Zbl 1130.90413 · doi:10.1007/s10898-003-2683-2
[34] Deguire, P., Tan, K.K., Yuan, G.X.Z.: The study of maximal elements, fixed points for L s majorized mappings, and their applications to minimax and variational inequalities in the product topological spaces. Nonlinear Anal. Theory, Methods, Appl. 37, 933–951 (1999) · Zbl 0930.47024 · doi:10.1016/S0362-546X(98)00084-4
[35] Chen, G.Y., Yang, X.Q.: Characterizations of variable domination structures via nonlinear scalarization. J. Optim. Theory Appl. 112, 97–110 (2002) · Zbl 0988.49005 · doi:10.1023/A:1013044529035
[36] Gerstewitz, C.T.: Nonconvex duality in vector optimization. Wissensch. Z., Technische Hochschule Leuna-Mersebung 25, 357–364 (1983) (in German) · Zbl 0548.90081
[37] Oettli, W.: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam. 22, 213–221 (1997) · Zbl 0914.90235
[38] Flores-Bazán, F., Flores-Bazán, F.: Vector equilibrium problems under asymptotic analysis. J. Glob. Optim. 26, 141–166 (2003) · Zbl 1036.90060 · doi:10.1023/A:1023048928834
[39] Ansari, Q.H., Schaible, S., Yao, J.C.: System of vector equilibrium problems and its applications. J. Optim. Theory Appl. 107, 547–557 (2000) · Zbl 0972.49009 · doi:10.1023/A:1026495115191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.