Out of plane model for heterogeneous periodic materials: the case of masonry. (English) Zbl 1146.74312

Summary: The aim of this paper is to propose a 3D model to study masonry walls subject to in plane and out of plane actions through a rigorous homogenization procedure. 2D rigorous models in several perturbative parameters have been already developed – by A. Cecchi and R. Di Marco [Eur. J. Mech., A, Solids 19, No. 3, 535–546 (2000; Zbl 0964.74050)], Cecchi and N. L. Rizzi [Int. J. Solids Struct. 38, No. 1, 29–36 (2001; Zbl 0993.74054)] and Cecchi and K. Sab [Eur. J. Mech., A, Solids 21, No. 2, 249–268 (2002; Zbl 1094.74045)] – so as to study the behaviour of masonry walls subject to actions parallel to the middle plane. By comparison with previous models, in this paper the study of masonry takes into account the formulation of a 3D model where masonry is assumed periodic in the middle plane, i.e. in the orthogonal directions to the thickness. The size of the thickness is comparable with the one of the period. The asymptotic model that has been developed allows the identification of the 3D solid with a 2D Love-Kirchoff plate, in which the anisotropy is connected with the arrangement of blocks. The obtained results give the values of homogenized elastic plate constants [D. Caillerie, Math. Methods Appl. Sci. 6, 159–191 (1984; Zbl 0543.73073)].


74E05 Inhomogeneity in solid mechanics
Full Text: DOI


[1] Alpa, G.; Monetto, I., Microstructural model for dry block masonry walls with in-plane loading, J. mech. phys. solids, 47, 7, 1159-1175, (1994) · Zbl 0806.73057
[2] Anthoine, A.; Pegon, P., Numerical strategies for solving continuum damage problems involving softening: application to the homogenization of masonry, () · Zbl 0919.73004
[3] Anthoine, A., Derivation of in plane elastic characteristic of masonry through homogenization theory, Internat. J. solid structures, 32, 137-163, (1995) · Zbl 0868.73010
[4] Avila-Pozos, O.; Klarbring, A.; Movchan, A.B., Asymptotic model of orthotropic highly inhomogeneous layered structure, Mech. mater., 31, 101-115, (1999)
[5] Bensoussan, A.; Lions, J.L.; Papanicolaou, G., Asymptotic analysis for periodic structures, (1978), North-Holland Amsterdam · Zbl 0411.60078
[6] Bogoliubov, N.N.; Mitropolsky, Yu., Asymptotic methods in nonlinear mechanics, (1961), Gordon Breach New York
[7] Caillerie, D., Thin elastic and periodic plates, Math. meth. appl. sci., 6, 159-191, (1984) · Zbl 0543.73073
[8] Cecchi, A.; Di Marco, R., Homogeneization of masonry walls with a numerical oriented procedure. rigid or elastic blocks?, European J. mech. A. solids, 19, 535-546, (2000) · Zbl 0964.74050
[9] Cecchi, A.; Rizzi, N.L., Heterogeneous material. A mixed homogeneization rigidification technique, Internat. J. solids structures, 38/1, 29-36, (2001) · Zbl 0993.74054
[10] Cecchi, A.; Sab, K., A multi-parameter homogenization study for modelling elastic masonry, European J. mech. A. solids, 21, 249-268, (2002) · Zbl 1094.74045
[11] Chiostrini, S.; Vignoli, A., Application of a numerical method to the study of masonry panels with various geometry under sismic loads, ()
[12] Ciarlet, P.G.; Destuynder, P., A justification of the two-dimensional linear plate model, J. Mécanique, 2, 18, 315-344, (1979) · Zbl 0415.73072
[13] de Felice, G., Metodi di omogeneizzazione per sistemi regolari di corpi rigidi, ()
[14] de Felice, G., Détermination des coefficients d’élasticité de la maçonnerie par une méthode d’homogénéisation, (), 393-396
[15] de Felice, G.; Salerno, G., Continuum modelling of discrete systems: a variational approach, ()
[16] Gilstrap, J.M.; Dolan, C.W., Out of plane bending of FRP-reinforced masonry walls, Compos. sci. technol., 58, 1277-1284, (1998)
[17] Giuffré, A., ()
[18] Lee, S.J.; Pande, G.N.; Middleton, J.; Kralj, B., Numerical modelling of brick masonry panels subject to lateral loading, Comput. structures, 31, 211, 473-479, (1996) · Zbl 0900.73833
[19] Lee, S.J.; Pande, G.N.; Kralj, B., A comparative study on the approximate analysis of masonry structures, Mater. structures, 61, 4, 735-745, (1998) · Zbl 0900.73833
[20] Klarbring, A., Derivation of model of adhesively bounded joints by the asymptotic expansion method, Internat. J. engrg. sci., 29, 493-512, (1991) · Zbl 0762.73069
[21] Lofti, H.R.; Benson Shing, P., Interface model applied to fracture of masonry structures, J. struct. engrg. ASCE, 120, 63-80, (1994)
[22] Lopez, J.; Oller, S.; Onate, E.; Lubliner, J., A homogeneous constitutive model for masonry, Internat. J. numer. meth. engrg., 46, 1651-1671, (1999) · Zbl 0971.74063
[23] Lourenço, P.B., Anisotropic softening model for masonry plates and shells, J. struct. engrg. ASCE, 9, 126, 1008-1015, (2000)
[24] Luciano, R.; Sacco, E., Homogenization technique and damage model for old masonry material, Internat. J. solids structures, 34, 24, 3191-3208, (1997) · Zbl 0942.74610
[25] Maier, G.; Nappi, A.; Papa, E., On damage and failure of brick masonry, (), 223-245
[26] Masiani, R.; Rizzi, N.L.; Trovalusci, P., Masonry walls as structured continua, Meccanica, 30, 673-683, (1995) · Zbl 0840.73008
[27] Nayfeh, A.H., Perturbation methods, (1973), Wiley New York
[28] Pande, G.N.; Liang, J.X.; Middleton, J., Equivalent elastic moduli for brick masonry, Comp. geothec., 8, 243-265, (1989)
[29] Pietruszczak, S.; Niu, X., A mathematical description of macroscopic behaviour of brick masonry, Internat. J. solids structures, 29, 5, 531-546, (1992) · Zbl 0825.73034
[30] Sanchez-Palencia, E., Non homogeneous media and vibration theory, (1980), Springer-Verlag Berlin · Zbl 0432.70002
[31] ()
[32] Sanchez-Hubert, J.; Sanchez-Palencia, E., Introduction aux méthodes asymptotiques et a l’homogénéisation, (1992), Masson Paris
[33] Shrive, N.G.; England, G.L., Elastic creep and shrinkage behaviour of masonry, Internat. J. solids struct., 29, 103-109, (1991)
[34] Zhang, X.; Shivas, Singh, Bull, S.; Desmond, K.; Cooke, N., Out of plane performance of reinforced masonry walls with openings, J. struct. engrg. ASCE, 1, 127, 51-57, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.