×

Sub-Riemannian geometry of the coefficients of univalent functions. (English) Zbl 1147.30015

The authors consider coefficient bodies \(\mathcal M_n=\{(c_1,\dots,c_n): f\in\tilde{\mathbf S}\}\) where \(\tilde{\mathbf S}\) is the class of holomorphic univalent functions \(f(z)=z(1+\sum_{n=1}^{\infty}c_nz^n)\) which are smooth on the boundary \(S^1\) of the unit disk \(U\). Based on the Loewner-Kufarev parametric representation they get a Hamiltonian system for the coefficients \(c_k(t)\) determined by a solution \(w(z,t)=e^{-t}z(1+\sum_{n=1}^{\infty}c_n(t)z^n)\) to the Loewner-Kufarev equation \[ \frac{dw}{dt}=-wp(w,t),\;\;\;w(z,0)=z,\;\;\;t\geq0, \] \(p(z,t)=1+p_1(t)z+\dots\) is holomorphic in \(U\), \(\operatorname{Re} p(z,t)>0\). This Hamiltonian system appears to be partially integrable, and the first integrals are Kirillov’s operators for a representation of the Virasoro algebra. If \(L_1,\dots L_n\) are the first integrals of the Hamiltonian system and \(H\) is the Hamiltonian function, then \([L_j,H]=0\), \([L_j,L_k]=(j-k)L_{k+j}\), when \(k+j\leq n\), or 0 otherwise. Then \(\mathcal M_n\) are defined as sub-Riemannian manifolds. Given a Lie-Poisson bracket, they form a grading of subspaces with the first subspace as a bracket-generating distribution of complex dimension two. With this sub-Riemannian structure the authors construct a new Hamiltonian system to calculate regular geodesics which turn to be horizontal. Lagrangian formalism is also given in the particular case \(\mathcal M_3\).

MSC:

30C55 General theory of univalent and multivalent functions of one complex variable
17B68 Virasoro and related algebras
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
53C17 Sub-Riemannian geometry
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Airault, H.; Malliavin, P., Unitarizing probability measures for representations of Virasoro algebra, J. Math. Pures Appl., 80, 6, 627-667 (2001) · Zbl 1032.58021
[2] Arnold, V. I., Mathematical Methods of Classical Mechanics (1989), Springer: Springer New York
[3] Babelon, O.; Bernard, D.; Talon, M., Introduction to Classical Integrable Systems, Cambridge Monogr. Math. Phys. (2003), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1045.37033
[4] Babenko, K. I., The theory of extremal problems for univalent functions of class \(S\), Proc. Steklov Inst. Math., 101 (1975), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI, 320 pp.; translated by · Zbl 0293.30016
[5] Bambusi, D.; Gaeta, G., On persistence of invariant tori and a theorem by Nekhoroshev, Math. Phys. Electron. J., 8 (2002), paper 1, 13 pp · Zbl 1042.37037
[6] Bolsinov, A. V.; Fomenko, A. T., Integrable Hamiltonian Systems. Geometry, Topology, Classification (2004), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 0908.58026
[7] Bott, R., On the characteristics classes of groups of diffeomorphisms, Enseign. Math. (2), 23, 209-220 (1977) · Zbl 0367.57004
[8] de Branges, L., A proof of the Bieberbach conjecture, Acta Math., 154, 1-2, 137-152 (1985) · Zbl 0573.30014
[9] Chow, W. L., Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117, 98-105 (1939) · Zbl 0022.02304
[10] Duren, P., Univalent Functions (1983), Springer: Springer New York · Zbl 0514.30001
[11] Fiorani, E.; Giachetta, G.; Sardanashvily, G., The Liouville-Arnold-Nekhoroshev theorem for non-compact invariant manifolds, J. Phys. A, 36, 7, L101-L107 (2003) · Zbl 1039.37040
[12] Gaeta, G., The Poincaré-Lyapounov-Nekhoroshev theorem, Ann. Phys., 297, 1, 157-173 (2002) · Zbl 1041.37027
[13] Gel’fand, I. M.; Fuchs, D. B., Cohomology of the Lie algebra of vector fields on the circle, Funct. Anal. Appl., 2, 4, 342-343 (1968)
[14] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701
[15] Kirillov, A. A., Kähler structure on the \(K\)-orbits of a group of diffeomorphisms of the circle, Funct. Anal. Appl., 21, 2, 122-125 (1987) · Zbl 0647.58010
[16] Kirillov, A. A., Geometric approach to discrete series of unirreps for Vir, J. Math. Pures Appl., 77, 735-746 (1998) · Zbl 0922.58078
[17] Kirillov, A. A.; Yuriev, D. V., Kähler geometry of the infinite-dimensional homogeneous space \(M = Diff_+(S^1) / Rot(S^1)\), Funct. Anal. Appl., 21, 4, 284-294 (1987) · Zbl 0671.58007
[18] Kirillov, A. A.; Yuriev, D. V., Representations of the Virasoro algebra by the orbit method, J. Geom. Phys., 5, 3, 351-363 (1988) · Zbl 0698.17015
[19] Mitchell, J., On Carnot-Carathéodory metrics, J. Differential Geom., 21, 1, 35-45 (1985) · Zbl 0554.53023
[20] Montgomery, R., A survey of singular curves in sub-Riemannian geometry, J. Dynam. Control Systems, 1, 1, 49-90 (1995) · Zbl 0941.53021
[21] Nagel, A.; Stein, E. M.; Wainger, S., Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155, 1-2, 103-147 (1985) · Zbl 0578.32044
[22] Nekhoroshev, N. N., The Poincaré-Lyapunov-Liouville-Arnol’d theorem, Funct. Anal. Appl., 28, 2, 128-129 (1994) · Zbl 0847.58035
[23] Neretin, Yu. A., Representations of Virasoro and affine Lie algebras, (Encyclopaedia Math. Sci., vol. 22 (1994), Springer: Springer Berlin), 157-225 · Zbl 0805.17018
[24] Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2), 129, 1, 1-60 (1989) · Zbl 0678.53042
[25] Pommerenke, Ch., Univalent Functions, with a Chapter on Quadratic Differentials by G. Jensen (1975), Vandenhoeck & Ruprecht: Vandenhoeck & Ruprecht Göttingen · Zbl 0298.30014
[26] Prokhorov, D., Sets of values of systems of functionals in classes of univalent functions, Mat. Sb.. Mat. Sb., Math. USSR-Sb., 71, 2, 499-516 (1992), translation in
[27] Prokhorov, D.; Vasil’ev, A., Univalent functions and integrable systems, Comm. Math. Phys., 262, 2, 393-410 (2006) · Zbl 1103.37045
[28] Rashevski, P. K., About connecting two points of complete nonholonomic space by admissible curve, Uchen. Zap. Ped. Inst. K. Libknehta, 83-94 (1938)
[29] Schaeffer, A. C.; Spencer, D. C., Coefficient Regions for Schlicht Functions (with a Chapter on the Region of the Derivative of a Schlicht Function by Arthur Grad), Amer. Math. Soc. Colloq. Publ., vol. 35 (1950), Amer. Math. Soc.: Amer. Math. Soc. New York · Zbl 0066.05701
[30] Strichartz, R. S., Sub-Riemannian geometry, J. Differential Geom., 24, 2, 221-263 (1986) · Zbl 0609.53021
[31] Strichartz, R. S., Corrections to: “Sub-Riemannian geometry”, J. Differential Geom., 30, 2, 595-596 (1989)
[32] Vasil’ev, A., Energy characteristics of subordination chains (2005), 12 pp
[33] (Zakharov, V. E., What is Integrability?, Springer Ser. Nonlinear Dynam. (1991), Springer: Springer Berlin) · Zbl 0724.00014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.