×

zbMATH — the first resource for mathematics

Uniform convergence of monotone measure differential inclusions: with application to the control of mechanical systems with unilateral constraints. (English) Zbl 1147.34310
We present theorems which give sufficient conditions for the uniform convergence of measure differential inclusions with certain maximal monotonicity properties. The framework of measure differential inclusions allows us to describe systems with state discontinuities. Moreover, we illustrate how these convergence results for measure differential inclusions can be exploited to solve tracking problems for certain classes of nonsmooth mechanical systems with friction and one-way clutches. Illustrative examples of convergent mechanical systems are discussed in detail.

MSC:
34A60 Ordinary differential inclusions
93C99 Model systems in control theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s10107-006-0041-0 · Zbl 1148.93003
[2] DOI: 10.1109/9.989067 · Zbl 1364.93552
[3] Arcak M., IEEE Trans. Autom. Contr. 46 pp 1–
[4] DOI: 10.1016/0005-1098(94)90209-7 · Zbl 0800.93424
[5] Aubin J.-P., Systems and Control: Foundations and Applications 2, in: Set-Valued Analysis (1990)
[6] DOI: 10.1142/S0218127405013010 · Zbl 1092.93582
[7] Brézis H., North-Holland Mathematics Studies 5, in: Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert (1973) · Zbl 0252.47055
[8] DOI: 10.1109/9.554400 · Zbl 0872.70019
[9] DOI: 10.1007/978-1-4471-0557-2_6
[10] DOI: 10.1016/j.sysconle.2003.09.007 · Zbl 1157.93455
[11] DOI: 10.1007/978-1-4612-2020-6
[12] Coddington E. A., Theory of Ordinary Differential Equations (1955) · Zbl 0064.33002
[13] Demidovich B. P., Lectures on Stability Theory (1967) · Zbl 0155.41601
[14] DOI: 10.1007/978-94-015-7793-9
[15] DOI: 10.1109/9.489210 · Zbl 0848.93055
[16] DOI: 10.1002/(SICI)1099-1239(19990715)9:8<485::AID-RNC417>3.0.CO;2-4 · Zbl 0937.93033
[17] DOI: 10.1016/j.arcontrol.2004.01.002
[18] DOI: 10.1007/978-3-540-44479-4
[19] DOI: 10.1002/cta.316 · Zbl 1075.94035
[20] DOI: 10.1016/j.automatica.2005.12.019 · Zbl 1106.93042
[21] DOI: 10.1109/TCST.2005.863658
[22] DOI: 10.1016/j.aml.2005.08.003 · Zbl 1133.93020
[23] DOI: 10.1007/978-1-84628-615-5
[24] Khalil H. K., Nonlinear Systems (1996)
[25] DOI: 10.1016/S0997-7538(02)01231-7 · Zbl 1023.70009
[26] DOI: 10.1007/978-3-540-44398-8
[27] DOI: 10.1016/j.euromechsol.2006.04.004 · Zbl 1187.70041
[28] Leine R. I., Int. J. Nonlin. Dyn. Chaos Engin. Syst.
[29] DOI: 10.1016/S0005-1098(98)00019-3 · Zbl 0934.93034
[30] DOI: 10.1109/TAC.2002.806650 · Zbl 1364.93503
[31] DOI: 10.1109/TCST.2005.863674
[32] DOI: 10.1109/9.935068 · Zbl 1008.93061
[33] DOI: 10.1049/ip-cta:20010366
[34] DOI: 10.1007/978-3-0348-7614-8
[35] J. J. Moreau, Topics in Nonsmooth Mechanics, eds. J. J. Moreau, P. D. Panagiotopoulos and G. Strang (Birkhaüser Verlag, Basel, Boston, Berlin, 1988) pp. 1–74.
[36] DOI: 10.1007/978-3-7091-2624-0_1
[37] DOI: 10.1016/j.sysconle.2004.02.003 · Zbl 1157.34333
[38] DOI: 10.1007/11529798_9 · Zbl 1111.93026
[39] Pavlov A., Systems & Control: Foundations and Applications Series, in: Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach (2005)
[40] DOI: 10.1142/S0218127498000188 · Zbl 0938.93056
[41] DOI: 10.1109/9.847100 · Zbl 0969.49016
[42] DOI: 10.1515/9781400873173 · Zbl 0932.90001
[43] DOI: 10.1016/S0947-3580(95)70005-X · Zbl 1177.93003
[44] DOI: 10.1023/B:NODY.0000017482.61599.86 · Zbl 1041.70015
[45] van de Wouw N., Lecture Notes in Control and Information Systems Series, in: Group Coordination and Cooperative Control (2006)
[46] DOI: 10.1007/BFb0109998
[47] Willems J. L., Stability Theory of Dynamical Systems (1970)
[48] Yakubovich V., Autom. Remote Contr. 7 pp 905–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.