×

Chaotification for a class of first-order partial difference equations. (English) Zbl 1147.37325


MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
39A99 Difference equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.2307/2324899 · Zbl 0758.58019
[2] DOI: 10.1109/81.633897
[3] DOI: 10.1142/S021812749600076X · Zbl 0875.93157
[4] DOI: 10.1142/S0218127498001236 · Zbl 0941.93522
[5] DOI: 10.1142/S0218127403006935 · Zbl 1066.37008
[6] DOI: 10.1016/j.chaos.2004.11.058 · Zbl 1071.37018
[7] DOI: 10.1098/rsta.2006.1833 · Zbl 1152.93394
[8] DOI: 10.1201/9781420023688
[9] Devaney R. L., An Introduction to Chaotic Dynamical Systems (1989) · Zbl 0695.58002
[10] DOI: 10.1002/int.4550100107 · Zbl 0830.92009
[11] Hu G., Phys. Rev. Lett. 72 pp 68–
[12] DOI: 10.1109/81.904880 · Zbl 0998.94016
[13] DOI: 10.1109/TCSI.2001.972844 · Zbl 0991.00029
[14] DOI: 10.2307/2318254 · Zbl 0351.92021
[15] DOI: 10.1016/0022-247X(78)90115-4 · Zbl 0381.58004
[16] DOI: 10.2307/2691012 · Zbl 1008.37014
[17] Robinson C., Dynamical Systems: Stability, Symbolic Dynamics and Chaos (1999) · Zbl 0914.58021
[18] Rudin W., Functional Analysis (1973) · Zbl 0253.46001
[19] DOI: 10.1016/j.chaos.2004.02.015 · Zbl 1067.37047
[20] DOI: 10.1142/S0218127405012351 · Zbl 1082.37031
[21] DOI: 10.1080/10236190701503074 · Zbl 1144.39002
[22] DOI: 10.1142/S021812740601629X · Zbl 1185.37084
[23] DOI: 10.1142/S0218127499000985 · Zbl 0964.93039
[24] Wang X. F., Int. J. Bifurcation and Chaos 10 pp 549–
[25] DOI: 10.1007/978-1-4757-4067-7
[26] DOI: 10.1063/1.1568692
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.