×

Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method. (English) Zbl 1147.65106

Appl. Math. Comput. 202, No. 1, 113-120 (2008); corrigendum ibid. 219, No. 16, 8413-8415 (2013).
Summary: Multi-term linear and non-linear diffusion-wave equations of fractional order are solved using Adomian decomposition method. Some numerical examples are presented.

MSC:

65R20 Numerical methods for integral equations
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
45K05 Integro-partial differential equations
26A33 Fractional derivatives and integrals
35L70 Second-order nonlinear hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer · Zbl 0802.65122
[2] Wazwaz, A.M., The numerical solution of fifth-order boundary value problems by the decomposition method, J. comput. appl. math., 136, 1-2, 259-270, (2001) · Zbl 0986.65072
[3] Wazwaz, A.M., A computational approach to soliton solutions of the kadomtsev – petviashvili equation, Appl. math. comput., 123, 2, 205-217, (2001) · Zbl 1024.65098
[4] Wazwaz, A.M., Analytic treatment for variable coefficient fourth-order parabolic partial differential equations, Appl. math. comput., 123, 2, 219-227, (2001) · Zbl 1027.35006
[5] Wazwaz, A.M., Exact solutions to nonlinear diffusion equations obtained by the decomposition method, Appl. math. comput., 123, 1, 109-122, (2001) · Zbl 1027.35019
[6] Biazar, J.; Babolian, E.; Islam, R., Solution of the system of ordinary differential equations by Adomian decomposition method, Appl. math. comput., 147, 3, 713-719, (2004) · Zbl 1034.65053
[7] Biazar, J.; Babolian, E.; Islam, R., Solution of the system of Volterra integral equations of the first kind by Adomian decomposition method, Appl. math. comput., 139, 249-258, (2003) · Zbl 1027.65180
[8] Biazar, J., Solution of systems of integral differential equations by Adomian decomposition method, Appl. math. comput., 168, 2, 1232-1238, (2005) · Zbl 1082.65594
[9] Babolian, E.; Biazar, J.; Vahidi, A.R., Solution of a system of nonlinear equations by Adomian decomposition method, Appl. math. comput., 150, 3, 847-854, (2004) · Zbl 1075.65073
[10] Babolian, E.; Sadeghi Goghary, H.; Abbasbandy, S., Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method, Appl. math. comput., 161, 3, 733-744, (2005) · Zbl 1062.65143
[11] Babolian, E.; Biazar, J.; Vahidi, A.R., The decomposition method applied to systems of Fredholm integral equations of the second kind, Appl. math. comput., 148, 2, 443-452, (2004) · Zbl 1042.65104
[12] Babolian, E.; Sadeghi, H.; Javadi, Sh., Numerically solution of fuzzy differential equations by Adomian method, Appl. math. comput., 149, 2, 547-557, (2004) · Zbl 1038.65056
[13] Kaya, D.; El-Sayed, S.M., A numerical solution of the klein – gordon equation and convergence of the decomposition method, Appl. math. comput., 156, 2, 341-353, (2004) · Zbl 1084.65101
[14] Kaya, D.; El-Sayed, S.M., An application of the decomposition method for the generalized KdV and RLW equations, Chaos soliton fract., 17, 5, 869-877, (2003) · Zbl 1030.35139
[15] Kaya, D.; El-Sayed, S.M., On the solution of the coupled schrödinger – kdv equation by the decomposition method, Phys. lett. A, 313, 1-2, 82-88, (2003) · Zbl 1040.35099
[16] Shawagfeh, N.T., Analytical approximate solutions for nonlinear fractional differential equations, Appl. math. comput., 131, 517-529, (2002) · Zbl 1029.34003
[17] Daftardar-Gejji, V.; Jafari, H., Adomian decomposition: a tool for solving a system of fractional differential equations, J. math. anal. appl., 301, 508-518, (2005) · Zbl 1061.34003
[18] Jafari, H.; Daftardar-Gejji, V., Solving a system of non-linear fractional differential equations using Adomian decomposition method, J. comput. appl. math., 196, 644-651, (2006) · Zbl 1099.65137
[19] Jafari, H.; Daftardar-Gejji, V., Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method, Appl. math. comput., 80, 2, 700-706, (2006) · Zbl 1102.65136
[20] Jafari, H.; Daftardar-Gejji, V., Solving linear and non-linear fractional diffusion and wave equations by Adomian decomposition, Appl. math. comput., 180, 488-497, (2006) · Zbl 1102.65135
[21] Luchko, Yu.; Gorenflo, R., An operational method for solving fractional differential equations with the Caputo derivatives, Acta math. Vietnam., 24, 207-233, (1999) · Zbl 0931.44003
[22] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[23] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Yverdon · Zbl 0818.26003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.