×

Dynamics of thin vortex rings. (English) Zbl 1147.76011

Summary: As part of a long-range study of vortex rings, their dynamics, interactions with boundaries and with each other, we present the results of experiments on thin core rings generated by a piston gun in water. We characterize the dynamics of these rings by means of traditional equations for such rings in inviscid fluid suitably modifying them to be applicable to viscous fluid. We develop expressions for the radius, core size, circulation and bubble dimensions of these rings. We report the direct measurement of the impulse of a vortex ring by means of a physical pendulum.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
76D17 Viscous vortex flows
76-05 Experimental work for problems pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1063/1.870268 · Zbl 1149.76537
[2] DOI: 10.1007/s003480050071
[3] DOI: 10.1146/annurev.fl.24.010192.001315
[4] Donnelly, Quantized Vortices in Helium II. (1991)
[5] Scase, Euro. J. Fluid Mech. 25 pp 302– (2006)
[6] DOI: 10.1007/BF01597484
[7] DOI: 10.1017/S0022112004009784 · Zbl 1061.76502
[8] DOI: 10.1017/S0022112085000672
[9] Barenghi, Phys. Rev. 74 pp 046303– (2006)
[10] DOI: 10.1017/S0022112081001511 · Zbl 0465.76020
[11] DOI: 10.1007/BF00682247
[12] DOI: 10.1017/S0022112078000385
[13] DOI: 10.1017/S002211206600140X
[14] Saffman, Stud. Appl. Maths. 49 pp 371– (1970) · Zbl 0224.76032
[15] Baird, Can. J. Chem. Engng 55 pp 19– (1977)
[16] Rogers, Am. J. Sci. 26 pp 246– (1858)
[17] DOI: 10.1016/0169-5983(88)90067-6
[18] Roberts, J. Phys. 4 pp 55– (1971)
[19] DOI: 10.1016/0375-9601(70)90193-3
[20] Reynolds, Nature 14 pp 477– (1876)
[21] DOI: 10.1103/PhysRev.136.A1194
[22] DOI: 10.1016/0375-9601(80)90682-9
[23] DOI: 10.1007/s00348-007-0373-4
[24] DOI: 10.1017/S0022112074002370 · Zbl 0279.76029
[25] DOI: 10.1017/S0022112072001041
[26] DOI: 10.1063/1.864702
[27] Loitsyanskii, Mechanics of Liquids and Gases. (1966)
[28] Lim, Fluid Vortices (1995)
[29] Lamb, Hydrodynamics. (1945)
[30] DOI: 10.1002/andp.19394270604
[31] DOI: 10.1017/S0022112005006853 · Zbl 1085.76507
[32] DOI: 10.1023/A:1013793001548
[33] DOI: 10.1063/1.1518029 · Zbl 1185.76171
[34] Goldstein, Modern Developments in Fluid Dynamics (1938)
[35] DOI: 10.1017/S0022112097008410 · Zbl 0922.76021
[36] DOI: 10.1063/1.869736
[37] DOI: 10.1017/S0022112000008995 · Zbl 0977.76019
[38] DOI: 10.1017/S0022112072001107 · Zbl 0231.76013
[39] DOI: 10.1063/1.1761719
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.