zbMATH — the first resource for mathematics

Subgridscale stabilization of time-dependent convection dominated diffusive transport. (English) Zbl 1147.76039
Summary: In [W.J. Layton, Appl. Math. Comput. 133, No.1, 147–157 (2002; Zbl 1024.76026)], a variationally consistent eddy viscosity discretization is given for the stationary convection diffusion equation \[ u_ t-\varepsilon \Delta u+\vec b\cdot \nabla u+gu=f,\quad \vec x\in\Omega,\quad u=0,\;\vec x \text{ on }\partial\Omega \] . We further develop this discretization to include the time-dependent problem. We give comprehensive stability and error analysis of the semi-discrete case. We also state the stability and error results for the fully discrete algorithm with a Crank-Nicholson time discretization. The error bound is near optimal and independent of the diffusion coefficient, \(\varepsilon\). Finally, we give guidance on optimal parameter selection for some common finite element spaces.

76M10 Finite element methods applied to problems in fluid mechanics
76R50 Diffusion
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35B25 Singular perturbations in context of PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K57 Reaction-diffusion equations
Full Text: DOI
[1] Codina, R., Comparison of some finite element methods for solving the diffusion – convection – reaction equation, Comput. methods appl. mech. engrg., 156, 185-210, (1998) · Zbl 0959.76040
[2] Evans, L., Partial differential equations, (1998), Amer. Math. Soc. Providence, RI
[3] Guermond, J.-L., Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN math. model. numer. anal., 33, 1293-1316, (1999) · Zbl 0946.65112
[4] Guermond, J.-L., Stabilisation par viscosité de sous-maille pour l’approximation de Galerkin des opérateurs linéaires motones, C. R. acad. sci. Paris, 328, 617-622, (1999) · Zbl 0933.65058
[5] Hughes, T.J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origins of stabilized methods, Comput. methods appl. mech. engrg., 127, 387-401, (1995) · Zbl 0866.76044
[6] Hughes, T.J.R.; Mazzei, L.; Jansen, K.E., Large eddy simulation and the variational multiscale method, Comput. vis. sci., 3, 47-59, (2000) · Zbl 0998.76040
[7] Hughes, T.J.R.; Oberai, A.A.; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys. fluids, 13, 1784-1799, (2001) · Zbl 1184.76237
[8] Hughes, T.J.R.; Mazzei, L.; Oberai, A.A.; Wray, A., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys. fluids, 13, 505-512, (2001) · Zbl 1184.76236
[9] John, V.; Kaya, S.; Layton, W.J., A two-level variational multiscale method for convection-dominated convection – diffusion equations, Comput. methods appl. mech. engrg., 195, 4594-4603, (2006) · Zbl 1124.76028
[10] S. Kaya, Numerical analysis of a variational multiscale method for turbulence, PhD thesis, University of Pittsburgh, 2004
[11] Layton, W.J., A connection between subgrid scale eddy viscosity and mixed methods, Appl. math. comput., 133, 147-157, (2002) · Zbl 1024.76026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.