×

zbMATH — the first resource for mathematics

An application of \(H\)-differentiability to nonnegative and unrestricted generalized complementarity problems. (English) Zbl 1147.90405
Summary: This paper deals with nonnegative nonsmooth generalized complementarity problem, denoted by GCP\((f, g)\). Starting with \(H\)-differentiable functions \(f\) and \(g\), we describe \(H\)-differentials of some GCP functions and their merit functions. We show how, under appropriate conditions on \(H\)-differentials of \(f\) and \(g\), minimizing a merit function corresponding to \(f\) and \(g\) leads to a solution of the generalized complementarity problem. Moreover, we generalize the concepts of monotonicity, \({\mathbf P}_{0}\)-property and their variants for functions and use them to establish some conditions to get a solution for generalized complementarity problem. Our results are generalizations of such results for nonlinear complementarity problem when the underlying functions are \(C^{1}\), semismooth, and locally Lipschitzian.

MSC:
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
49J50 Fréchet and Gateaux differentiability in optimization
PDF BibTeX Cite
Full Text: DOI
References:
[1] Chen, B., Chen, X., Kanzow, C.: A penalized Fischer–Burmeister NCP-function: theoretical investigation and numerical results. Math. Program. 88, 211–216 (2000) · Zbl 0968.90062
[2] Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) (reprinted: SIAM, Philadelphia (1990)) · Zbl 0582.49001
[3] Cottle, R.W., Giannessi, F., Lions, J.-L. (eds.): Variational Inequalities and Complementarity Problems: Theory and Applications. Wiley, New York (1980)
[4] Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, Boston (1992)
[5] Di Pillo, G., Giannessi, F. (eds.): Nonlinear Optimization and Applications. Plenum, New York (1996) · Zbl 0941.00047
[6] Facchinei, F., Kanzow, C.: On unconstrained and constrained stationary points of the implicit Lagrangian. J. Optim. Theory Appl. 92, 99–115 (1997) · Zbl 0914.90249
[7] Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problems and related algorithm. SIAM J. Optim. 7, 225–247 (1997) · Zbl 0873.90096
[8] Ferris, M.C., Pang, J.-S. (eds.): Complementarity and Variational Problems: State of the Art. SIAM, Philadelphia (1997) · Zbl 0891.90158
[9] Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997) · Zbl 0891.90158
[10] Ferris, M.C., Ralph, D.: Projected gradient methods for nonlinear complementarity problems via normal maps. In Du, D.Z., Qi, L., Womersley, R.S. (eds.) Recent Advances in Nonsmooth Optimization, pp. 57–87. World Scientific, Singapore (1995) · Zbl 0946.90090
[11] Fischer, A.: An NCP-function and its use for the solution of complementarity problems. In Du, D.Z., Qi, L., Womersley, R.S. (eds.) Recent Advances in Nonsmooth Optimization, pp. 88–105. World Scientific, Singapore (1995) · Zbl 0948.90133
[12] Fischer, A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Program. 76, 513–532 (1997) · Zbl 0871.90097
[13] Fischer, A.: A new constrained optimization reformulation for complementarity problems. J. Optim. Theory Appl. 97, 105–117 (1998) · Zbl 0907.90260
[14] Geiger, C., Kanzow, C.: On the resolution of monotone complementarity problems. Comput. Optim. 5, 155–173 (1996) · Zbl 0859.90113
[15] Gowda, M.S.: A note on H-differentiable functions. Department of Mathematics and Statistics, University of Maryland, Baltimore, MD (1998)
[16] Gowda, M.S.: Inverse and implicit function theorems for H-differentiable and semismooth functions. Optim. Methods Softw. 19, 443–461 (2004) · Zbl 1099.49018
[17] Gowda, M.S., Ravindran, G.: Algebraic univalence theorems for nonsmooth functions. J. Math. Anal. Appl. 252, 917–935 (2000) · Zbl 0993.49017
[18] Harker, P.T., Pang, J.-S.: Finite dimension variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990) · Zbl 0734.90098
[19] Hyer, D.H., Isac, G., Rassias, T.M.: Topics in Nonlinear Analysis and Applications. World Scientific, Singapore (1997)
[20] Isac, G.: Complementarity Problems. Lecture Notes in Mathematics, vol. 1528. Springer, New York (1992) · Zbl 0795.90072
[21] Jeyakumar, V., Luc, D.T.: Approximate Jacobian matrices for nonsmooth continuous maps and C 1-optimization. SIAM J. Control Optim. 36, 1815–1832 (1998) · Zbl 0923.49012
[22] Jiang, H.: Unconstrained minimization approaches to nonlinear complementarity problems. J. Glob. Optim. 9, 169–181 (1996) · Zbl 0868.90122
[23] Kanzow, C.: Nonlinear complementarity as unconstrained optimization. J. Optim. Theory Appl. 88, 139–155 (1996) · Zbl 0845.90120
[24] Kanzow, C., Fukushima, M.: Equivalence of the generalized complementarity problem to differentiable unconstrained minimization. J. Optim. Theory Appl. 90, 581–603 (1996) · Zbl 0866.90124
[25] Kanzow, C., Kleinmichel, H.: A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput. Optim. Appl. 11, 227–251 (1998) · Zbl 0913.90250
[26] Luca, T.D., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75, 407–439 (1996) · Zbl 0874.90185
[27] Luo, Z.Q., Tseng, P.: A new class of merit functions for the nonlinear complementarity problem. In: Ferris, M.C., Pang, J.S. (eds.) Complementarity and Variational Problems: State of the Art, pp. 204–225. SIAM, Philadelphia (1997) · Zbl 0886.90158
[28] Mangasarian, O.L., Solodov, M.V.: Nonlinear complementarity as unconstrained and constrained minimization. Math. Program. 62, 277–297 (1993) · Zbl 0813.90117
[29] Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 952–972 (1977) · Zbl 0376.90081
[30] Moré, J.J.: Global methods for nonlinear complementarity problems. Math. Oper. Res. 21, 589–614 (1996) · Zbl 0868.90127
[31] Moré, J.J., Rheinboldt, W.C.: On P- and S-functions and related classes of N-dimensional nonlinear mappings. Linear Algebra Appl. 6, 45–68 (1973) · Zbl 0247.65038
[32] Noor, M.A.: Quasi-complementarity problem. J. Math. Anal. Appl. 130, 344–353 (1988) · Zbl 0645.90086
[33] Noor, M.A.: General nonlinear complementarity problems. In: Srivastava, H.M., Rassias, T.M. (eds.) Analysis, Geometry, and Groups: A Riemann Legacy Volume, pp. 337–371. Hadronic, Palm Harbor (1993) · Zbl 0913.65057
[34] Pang, J.S.: The implicit complementarity problem. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming, pp. 487–518. Academic, New York (1981)
[35] Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993) · Zbl 0776.65037
[36] Qi, L.: C-differentiability, C-differential operators and generalized Newton methods. Research report, School of Mathematics, The University of New South Wales, Sydney, Australia (January 1996)
[37] Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993) · Zbl 0780.90090
[38] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998) · Zbl 0888.49001
[39] Song, Y., Gowda, M.S., Ravindran, G.: On characterizations of P- and P 0-properties in nonsmooth functions. Math. Oper. Res. 25, 400–408 (2000) · Zbl 1073.90570
[40] Song, Y., Gowda, M.S., Ravindran, G.: On some properties of P-matrix sets. Linear Algebra Appl. 290, 246–273 (1999) · Zbl 0949.15027
[41] Tawhid, M.A.: On the local uniqueness of solutions of variational inequalities under H-differentiability. J. Optim. Theory Appl. 113, 149–164 (2002) · Zbl 1001.49015
[42] Tawhid, M.A., Goffin, J.-L.: On minimizing some merit functions for nonlinear complementarity problems under H-differentiability. GERAD, École des Hautes Études Commericales, Montréal, Québec, Canada (March 2002, revised 2004) · Zbl 1189.90174
[43] Tawhid, M.A.: Nonsmooth generalized complementarity as unconstrained optimization. Department of Mathematics and Statistics, School of Advanced Technologies and Mathematics, Thompson Rivers University, Kamloops, Canada (June 2005) · Zbl 1204.65071
[44] Tawhid, M.A., Gowda, M.S.: On two applications of H-differentiability to optimization and complementarity problems. Comput. Optim. Appl. 17, 279–299 (2000) · Zbl 1168.49304
[45] Tseng, P., Yamashita, N., Fukushima, M.: Equivalence of complementarity problems to differentiable minimization: a unified approach. SIAM J. Optim. 6, 446–460 (1996) · Zbl 0853.65067
[46] Yamashita, N., Fukushima, M.: On stationary points of the implicit Lagrangian for nonlinear complementarity problems. J. Optim. Theory Appl. 84, 653–663 (1995) · Zbl 0824.90131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.